These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21888392)

  • 61. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications.
    Taberna PL; Mitra S; Poizot P; Simon P; Tarascon JM
    Nat Mater; 2006 Jul; 5(7):567-73. PubMed ID: 16783360
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M
    Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system.
    Choi HS; Kim T; Im JH; Park CR
    Nanotechnology; 2011 Oct; 22(40):405402. PubMed ID: 21911931
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synergistic Catalysis of SnO
    Feng X; Xue J; Zhang T; Zhang Z; Han C; Dai L; Wang L; He Z
    Front Chem; 2021; 9():671575. PubMed ID: 34026731
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 68. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dimensionally modulated, single-crystalline LiMPO4 (M= Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage.
    Vadivel Murugan A; Muraliganth T; Ferreira PJ; Manthiram A
    Inorg Chem; 2009 Feb; 48(3):946-52. PubMed ID: 19125669
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures.
    Lee K; Wang Y; Cao G
    J Phys Chem B; 2005 Sep; 109(35):16700-4. PubMed ID: 16853125
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Atomic-layer-deposition alumina induced carbon on porous Ni(x)Co(1-x)O nanonets for enhanced pseudocapacitive and Li-ion storage performance.
    Guan C; Wang Y; Zacharias M; Wang J; Fan HJ
    Nanotechnology; 2015 Jan; 26(1):014001. PubMed ID: 25489994
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hierarchically Porous N,S-Codoped Carbon-Embedded Dual Phase MnO/MnS Nanoparticles for Efficient Lithium Ion Storage.
    Wang Y; Wu H; Huang L; Zhao H; Liu Z; Chen X; Liu H; Zhang Y
    Inorg Chem; 2018 Jul; 57(13):7993-8001. PubMed ID: 29883121
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.
    Guo B; Kong Q; Zhu Y; Mao Y; Wang Z; Wan M; Chen L
    Chemistry; 2011 Dec; 17(52):14878-84. PubMed ID: 22127820
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Decorating carbon nanotubes with nanoparticles using a facile redox displacement reaction and an evaluation of synergistic hydrogen storage performance.
    Chang JK; Chen CY; Tsai WT
    Nanotechnology; 2009 Dec; 20(49):495603. PubMed ID: 19893152
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrochemical reduction of nitrobenzene at carbon nanotube electrode.
    Li YP; Cao HB; Liu CM; Zhang Y
    J Hazard Mater; 2007 Sep; 148(1-2):158-63. PubMed ID: 17374445
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors.
    Liu MC; Kong LB; Lu C; Li XM; Luo YC; Kang L
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4631-6. PubMed ID: 22924644
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes.
    Xu YJ; Liu X; Cui G; Zhu B; Weinberg G; Schlögl R; Maier J; Su DS
    ChemSusChem; 2010 Mar; 3(3):343-9. PubMed ID: 20029929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.