These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 21888417)
21. Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Missoum K; Bras J; Belgacem MN Biomacromolecules; 2012 Dec; 13(12):4118-25. PubMed ID: 23140404 [TBL] [Abstract][Full Text] [Related]
22. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Olsson RT; Azizi Samir MA; Salazar-Alvarez G; Belova L; Ström V; Berglund LA; Ikkala O; Nogués J; Gedde UW Nat Nanotechnol; 2010 Aug; 5(8):584-8. PubMed ID: 20676090 [TBL] [Abstract][Full Text] [Related]
23. Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores. Halake KS; Lee J Carbohydr Polym; 2014 May; 105():184-92. PubMed ID: 24708968 [TBL] [Abstract][Full Text] [Related]
24. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Kobayashi Y; Saito T; Isogai A Angew Chem Int Ed Engl; 2014 Sep; 53(39):10394-7. PubMed ID: 24985785 [TBL] [Abstract][Full Text] [Related]
25. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Borges AC; Eyholzer C; Duc F; Bourban PE; Tingaut P; Zimmermann T; Pioletti DP; Månson JA Acta Biomater; 2011 Sep; 7(9):3412-21. PubMed ID: 21651996 [TBL] [Abstract][Full Text] [Related]
26. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283 [TBL] [Abstract][Full Text] [Related]
27. Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Eyholzer C; de Couraça AB; Duc F; Bourban PE; Tingaut P; Zimmermann T; Månson JA; Oksman K Biomacromolecules; 2011 May; 12(5):1419-27. PubMed ID: 21405099 [TBL] [Abstract][Full Text] [Related]
32. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770 [TBL] [Abstract][Full Text] [Related]
33. Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Toivonen MS; Kurki-Suonio S; Schacher FH; Hietala S; Rojas OJ; Ikkala O Biomacromolecules; 2015 Mar; 16(3):1062-71. PubMed ID: 25665073 [TBL] [Abstract][Full Text] [Related]
34. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970 [TBL] [Abstract][Full Text] [Related]
35. Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. Cranston ED; Eita M; Johansson E; Netrval J; Salajková M; Arwin H; Wågberg L Biomacromolecules; 2011 Apr; 12(4):961-9. PubMed ID: 21395236 [TBL] [Abstract][Full Text] [Related]
36. A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Borisova A; De Bruyn M; Budarin VL; Shuttleworth PS; Dodson JR; Segatto ML; Clark JH Macromol Rapid Commun; 2015 Apr; 36(8):774-9. PubMed ID: 25721151 [TBL] [Abstract][Full Text] [Related]
37. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Benítez AJ; Torres-Rendon J; Poutanen M; Walther A Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557 [TBL] [Abstract][Full Text] [Related]