These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 21888430)
1. Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents. Stasiuk GJ; Tamang S; Imbert D; Poillot C; Giardiello M; Tisseyre C; Barbier EL; Fries PH; de Waard M; Reiss P; Mazzanti M ACS Nano; 2011 Oct; 5(10):8193-201. PubMed ID: 21888430 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution. Brown RP; Gallagher MJ; Fairbrother DH; Rosenzweig Z Langmuir; 2018 Nov; 34(46):13924-13934. PubMed ID: 30351964 [TBL] [Abstract][Full Text] [Related]
3. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. Hussain S; Won N; Nam J; Bang J; Chung H; Kim S Chemphyschem; 2009 Jul; 10(9-10):1466-70. PubMed ID: 19514031 [TBL] [Abstract][Full Text] [Related]
4. Bifunctional Gd(III) and Tb(III) chelates based on a pyridine-bis(iminodiacetate) platform, suitable optical probes and contrast agents for magnetic resonance imaging. Laurent S; Vander Elst L; Galaup C; Leygue N; Boutry S; Picard C; Muller RN Contrast Media Mol Imaging; 2014; 9(4):300-12. PubMed ID: 24706614 [TBL] [Abstract][Full Text] [Related]
5. Facile Synthesis of Gd-Cu-In-S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR In Vivo Imaging. Yang W; Guo W; Gong X; Zhang B; Wang S; Chen N; Yang W; Tu Y; Fang X; Chang J ACS Appl Mater Interfaces; 2015 Aug; 7(33):18759-68. PubMed ID: 26257133 [TBL] [Abstract][Full Text] [Related]
6. InP/ZnS quantum dot-based fluorescent probe for directly sensitive and selective detection of horseradish peroxidase. Yang E; Yao J; Wang L; Liu Y; Xiao Q; Huang S Methods Appl Fluoresc; 2019 Jun; 7(3):035008. PubMed ID: 30654340 [TBL] [Abstract][Full Text] [Related]
7. In vivo Comparison of the Biodistribution and Toxicity of InP/ZnS Quantum Dots with Different Surface Modifications. Li L; Chen Y; Xu G; Liu D; Yang Z; Chen T; Wang X; Jiang W; Xue D; Lin G Int J Nanomedicine; 2020; 15():1951-1965. PubMed ID: 32256071 [TBL] [Abstract][Full Text] [Related]
8. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy. Ranjbar-Navazi Z; Eskandani M; Johari-Ahar M; Nemati A; Akbari H; Davaran S; Omidi Y J Drug Target; 2018 Mar; 26(3):267-277. PubMed ID: 28795849 [TBL] [Abstract][Full Text] [Related]
9. CuInS Yang Y; Lin L; Jing L; Yue X; Dai Z ACS Appl Mater Interfaces; 2017 Jul; 9(28):23450-23457. PubMed ID: 28656760 [TBL] [Abstract][Full Text] [Related]
10. Systematical investigation of in vitro interaction of InP/ZnS quantum dots with human serum albumin by multispectroscopic approach. Huang S; Qiu H; Liu Y; Huang C; Sheng J; Cui J; Su W; Xiao Q Colloids Surf B Biointerfaces; 2016 Dec; 148():165-172. PubMed ID: 27595891 [TBL] [Abstract][Full Text] [Related]
11. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots. Ankireddy SR; Kim J Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):113-9. PubMed ID: 26347250 [TBL] [Abstract][Full Text] [Related]
12. Ln(III) chelates-functionalized carbon quantum dots: Synthesis, optical studies and multimodal bioimaging applications. Wu F; Yue L; Yang L; Wang K; Liu G; Luo X; Zhu X Colloids Surf B Biointerfaces; 2019 Mar; 175():272-280. PubMed ID: 30551014 [TBL] [Abstract][Full Text] [Related]
13. Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. Tamang S; Beaune G; Texier I; Reiss P ACS Nano; 2011 Dec; 5(12):9392-402. PubMed ID: 22035355 [TBL] [Abstract][Full Text] [Related]
14. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip. Ankireddy SR; Kim J Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):121-8. PubMed ID: 26347351 [TBL] [Abstract][Full Text] [Related]
15. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging. Soenen SJ; Manshian BB; Aubert T; Himmelreich U; Demeester J; De Smedt SC; Hens Z; Braeckmans K Chem Res Toxicol; 2014 Jun; 27(6):1050-9. PubMed ID: 24869946 [TBL] [Abstract][Full Text] [Related]
16. Nephrotoxicity Evaluation of Indium Phosphide Quantum Dots with Different Surface Modifications in BALB/c Mice. Li L; Chen T; Yang Z; Chen Y; Liu D; Xiao H; Liu M; Liu K; Xu J; Liu S; Wang X; Lin G; Xu G Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992627 [TBL] [Abstract][Full Text] [Related]
17. Imaging pancreatic cancer using bioconjugated InP quantum dots. Yong KT; Ding H; Roy I; Law WC; Bergey EJ; Maitra A; Prasad PN ACS Nano; 2009 Mar; 3(3):502-10. PubMed ID: 19243145 [TBL] [Abstract][Full Text] [Related]
18. Fluorescently labelled multiplex lateral flow immunoassay based on cadmium-free quantum dots. Beloglazova NV; Sobolev AM; Tessier MD; Hens Z; Goryacheva IY; De Saeger S Methods; 2017 Mar; 116():141-148. PubMed ID: 28126557 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the relaxivity of GdIII complexes appended to InP/ZnS quantum dots by linker tuning. Stasiuk GJ; Tamang S; Imbert D; Gateau C; Reiss P; Fries P; Mazzanti M Dalton Trans; 2013 Jun; 42(23):8197-200. PubMed ID: 23665764 [TBL] [Abstract][Full Text] [Related]
20. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Chibli H; Carlini L; Park S; Dimitrijevic NM; Nadeau JL Nanoscale; 2011 Jun; 3(6):2552-9. PubMed ID: 21509403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]