BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21888654)

  • 1. Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma.
    Schuck JB; Sun H; Penberthy WT; Cooper NG; Li X; Smith ME
    BMC Neurosci; 2011 Sep; 12():88. PubMed ID: 21888654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth hormone promotes hair cell regeneration in the zebrafish (Danio rerio) inner ear following acoustic trauma.
    Sun H; Lin CH; Smith ME
    PLoS One; 2011; 6(11):e28372. PubMed ID: 22140580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell proliferation follows acoustically-induced hair cell bundle loss in the zebrafish saccule.
    Schuck JB; Smith ME
    Hear Res; 2009 Jul; 253(1-2):67-76. PubMed ID: 19327392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar.
    Andrews CD; Payne JF; Rise ML
    J Fish Biol; 2014 Jun; 84(6):1793-819. PubMed ID: 24814183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic Acid Signaling Mediates Hair Cell Regeneration by Repressing p27kip and sox2 in Supporting Cells.
    Rubbini D; Robert-Moreno À; Hoijman E; Alsina B
    J Neurosci; 2015 Nov; 35(47):15752-66. PubMed ID: 26609166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-induced hearing loss in zebrafish: investigating structural and functional inner ear damage and recovery.
    Breitzler L; Lau IH; Fonseca PJ; Vasconcelos RO
    Hear Res; 2020 Jun; 391():107952. PubMed ID: 32361602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musashi-1 is the candidate of the regulator of hair cell progenitors during inner ear regeneration.
    Wakasaki T; Niiro H; Jabbarzadeh-Tabrizi S; Ohashi M; Kimitsuki T; Nakagawa T; Komune S; Akashi K
    BMC Neurosci; 2017 Aug; 18(1):64. PubMed ID: 28814279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Larval Zebrafish Lateral Line as a Model for Acoustic Trauma.
    Uribe PM; Villapando BK; Lawton KJ; Fang Z; Gritsenko D; Bhandiwad A; Sisneros JA; Xu J; Coffin AB
    eNeuro; 2018; 5(4):. PubMed ID: 30225343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An RNA interference-based screen of transcription factor genes identifies pathways necessary for sensory regeneration in the avian inner ear.
    Alvarado DM; Hawkins RD; Bashiardes S; Veile RA; Ku YC; Powder KE; Spriggs MK; Speck JD; Warchol ME; Lovett M
    J Neurosci; 2011 Mar; 31(12):4535-43. PubMed ID: 21430154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional recovery in the avian ear after hair cell regeneration.
    Smolders JW
    Audiol Neurootol; 1999; 4(6):286-302. PubMed ID: 10516389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vestibular and Auditory Hair Cell Regeneration Following Targeted Ablation of Hair Cells With Diphtheria Toxin in Zebrafish.
    Jimenez E; Slevin CC; Colón-Cruz L; Burgess SM
    Front Cell Neurosci; 2021; 15():721950. PubMed ID: 34489643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hair cell regeneration in an avian model of inner ear injury and repair from acoustic trauma.
    Saunders JC
    ILAR J; 2010; 51(4):326-37. PubMed ID: 21131710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure.
    Smith ME; Coffin AB; Miller DL; Popper AN
    J Exp Biol; 2006 Nov; 209(Pt 21):4193-202. PubMed ID: 17050834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hair cell regeneration in a chicken's inner ear after damage due to exposure to industrial noise].
    Sliwińska-Kowalska M; Jedlińska U; Rzadzińska A; Rajkowska E
    Otolaryngol Pol; 1999; 53(4):469-77. PubMed ID: 10581958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish.
    Lara RA; Breitzler L; Lau IH; Gordillo-Martinez F; Chen F; Fonseca PJ; Bass AH; Vasconcelos RO
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35258623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes.
    Shi T; Beaulieu MO; Saunders LM; Fabian P; Trapnell C; Segil N; Crump JG; Raible DW
    Elife; 2023 Jan; 12():. PubMed ID: 36598134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the adult vertebrate auditory sensory epithelium after trauma.
    Oesterle EC
    Hear Res; 2013 Mar; 297():91-8. PubMed ID: 23178236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ear stone size in hair cell acoustic sensory transduction.
    Inoue M; Tanimoto M; Oda Y
    Sci Rep; 2013; 3():2114. PubMed ID: 23817603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish.
    Yao Q; Wang L; Mittal R; Yan D; Richmond MT; Denyer S; Requena T; Liu K; Varshney GK; Lu Z; Liu XZ
    Anat Rec (Hoboken); 2020 Mar; 303(3):527-543. PubMed ID: 31883312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear.
    Slattery EL; Warchol ME
    J Neurosci; 2010 Mar; 30(9):3473-81. PubMed ID: 20203207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.