BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21888951)

  • 1. Exogenous growth hormone attenuates cognitive deficits induced by intermittent hypoxia in rats.
    Li RC; Guo SZ; Raccurt M; Moudilou E; Morel G; Brittian KR; Gozal D
    Neuroscience; 2011 Nov; 196():237-50. PubMed ID: 21888951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.
    Nair D; Ramesh V; Li RC; Schally AV; Gozal D
    J Neurochem; 2013 Nov; 127(4):531-40. PubMed ID: 23815362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous erythropoietin administration attenuates intermittent hypoxia-induced cognitive deficits in a murine model of sleep apnea.
    Dayyat EA; Zhang SX; Wang Y; Cheng ZJ; Gozal D
    BMC Neurosci; 2012 Jul; 13():77. PubMed ID: 22759774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver.
    Cai C; Ahmad T; Valencia GB; Aranda JV; Xu J; Beharry KD
    Growth Horm IGF Res; 2018 Aug; 41():54-63. PubMed ID: 29544682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green tea catechin polyphenols attenuate behavioral and oxidative responses to intermittent hypoxia.
    Burckhardt IC; Gozal D; Dayyat E; Cheng Y; Li RC; Goldbart AD; Row BW
    Am J Respir Crit Care Med; 2008 May; 177(10):1135-41. PubMed ID: 18276944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term moderate dose exogenous erythropoietin treatment protects from intermittent hypoxia-induced spatial learning deficits and hippocampal oxidative stress in young rats.
    Al-Qahtani JM; Abdel-Wahab BA; Abd El-Aziz SM
    Neurochem Res; 2014 Jan; 39(1):161-71. PubMed ID: 24248862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of growth hormone therapy in mitigating hypoxia-induced and food restriction-induced growth retardation in the newborn rat.
    Moromisato DY; Moromisato MY; Brasel JA; Cooper DM
    Crit Care Med; 1999 Oct; 27(10):2234-8. PubMed ID: 10548213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent hypoxic exposure during light phase induces changes in cAMP response element binding protein activity in the rat CA1 hippocampal region: water maze performance correlates.
    Goldbart A; Row BW; Kheirandish L; Schurr A; Gozal E; Guo SZ; Payne RS; Cheng Z; Brittian KR; Gozal D
    Neuroscience; 2003; 122(3):585-90. PubMed ID: 14622901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats.
    Abdel-Wahab BA; Abdel-Wahab MM
    Behav Brain Res; 2016 May; 305():65-75. PubMed ID: 26940604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomarkers of growth and carbohydrate metabolism in neonatal rats supplemented with fish oil and/or antioxidants during intermittent hypoxia.
    Galetaki DM; Cai CL; Bhatia KS; Chin V; Aranda JV; Beharry KD
    Growth Horm IGF Res; 2023 Feb; 68():101513. PubMed ID: 36427361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of erythropoietin and its receptor expression in the rat carotid body during chronic and intermittent hypoxia.
    Lam SY; Tipoe GL; Fung ML
    Adv Exp Med Biol; 2009; 648():207-14. PubMed ID: 19536483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen ameliorates chronic intermittent hypoxia-induced neurocognitive impairment via inhibiting oxidative stress.
    Li W; Yang S; Yu FY; Zhao Y; Sun ZM; An JR; Ji E
    Brain Res Bull; 2018 Oct; 143():225-233. PubMed ID: 30243887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial pre-training attenuates hippocampal impairments in rats exposed to intermittent hypoxia.
    Row BW; Goldbart A; Gozal E; Gozal D
    Neurosci Lett; 2003 Mar; 339(1):67-71. PubMed ID: 12618302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia of sleep apnoea: cardiopulmonary and cerebral changes after intermittent hypoxia in rats.
    Kalaria RN; Spoors L; Laude EA; Emery CJ; Thwaites-Bee D; Fairlie J; Oakley AE; Barer DH; Barer GR
    Respir Physiol Neurobiol; 2004 Apr; 140(1):53-62. PubMed ID: 15109928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent Hypoxia Activates N-Methyl-D-Aspartate Receptors to Induce Anxiety Behaviors in a Mouse Model of Sleep-Associated Apnea.
    Fan Y; Chou MC; Liu YC; Liu CK; Chen CH; Chen SL
    Mol Neurobiol; 2021 Jul; 58(7):3238-3251. PubMed ID: 33660202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neonatal Intermittent Hypoxia Induces Lasting Sex-Specific Augmentation of Rat Microglial Cytokine Expression.
    Kiernan EA; Wang T; Vanderplow AM; Cherukuri S; Cahill ME; Watters JJ
    Front Immunol; 2019; 10():1479. PubMed ID: 31333645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclooxygenase 2 and intermittent hypoxia-induced spatial deficits in the rat.
    Li RC; Row BW; Gozal E; Kheirandish L; Fan Q; Brittian KR; Guo SZ; Sachleben LR; Gozal D
    Am J Respir Crit Care Med; 2003 Aug; 168(4):469-75. PubMed ID: 12773326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical activity attenuates intermittent hypoxia-induced spatial learning deficits and oxidative stress.
    Gozal D; Nair D; Goldbart AD
    Am J Respir Crit Care Med; 2010 Jul; 182(1):104-12. PubMed ID: 20224062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation by growth hormone (GH) of insulin-like growth factor I and GH receptor/binding protein gene expression in rat liver.
    Maiter D; Walker JL; Adam E; Moatsstaats B; Mulumba N; Ketelslegers JM; Underwood LE
    Endocrinology; 1992 Jun; 130(6):3257-64. PubMed ID: 1375898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High fat/refined carbohydrate diet enhances the susceptibility to spatial learning deficits in rats exposed to intermittent hypoxia.
    Goldbart AD; Row BW; Kheirandish-Gozal L; Cheng Y; Brittian KR; Gozal D
    Brain Res; 2006 May; 1090(1):190-6. PubMed ID: 16674930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.