These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21888968)
1. Virtual tissue engineering of the human atrium: modelling pharmacological actions on atrial arrhythmogenesis. Aslanidi OV; Al-Owais M; Benson AP; Colman M; Garratt CJ; Gilbert SH; Greenwood JP; Holden AV; Kharche S; Kinnell E; Pervolaraki E; Plein S; Stott J; Zhang H Eur J Pharm Sci; 2012 Jul; 46(4):209-21. PubMed ID: 21888968 [TBL] [Abstract][Full Text] [Related]
2. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria. Colman MA; Aslanidi OV; Kharche S; Boyett MR; Garratt C; Hancox JC; Zhang H J Physiol; 2013 Sep; 591(17):4249-72. PubMed ID: 23732649 [TBL] [Abstract][Full Text] [Related]
3. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation. Aslanidi OV; Colman MA; Stott J; Dobrzynski H; Boyett MR; Holden AV; Zhang H Prog Biophys Mol Biol; 2011 Oct; 107(1):156-68. PubMed ID: 21762716 [TBL] [Abstract][Full Text] [Related]
4. Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models. Varela M; Colman MA; Hancox JC; Aslanidi OV PLoS Comput Biol; 2016 Dec; 12(12):e1005245. PubMed ID: 27984585 [TBL] [Abstract][Full Text] [Related]
5. Effect of Na+-channel blockade on the three-dimensional substrate of atrial fibrillation in a model of endo-epicardial dissociation and transmural conduction. Gharaviri A; Verheule S; Eckstein J; Potse M; Krause R; Auricchio A; Kuijpers NHL; Schotten U Europace; 2018 Nov; 20(suppl_3):iii69-iii76. PubMed ID: 30476060 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy. Aslanidi OV; Boyett MR; Dobrzynski H; Li J; Zhang H Biophys J; 2009 Feb; 96(3):798-817. PubMed ID: 19186122 [TBL] [Abstract][Full Text] [Related]
7. Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation--a simulation study. Kharche S; Garratt CJ; Boyett MR; Inada S; Holden AV; Hancox JC; Zhang H Prog Biophys Mol Biol; 2008; 98(2-3):186-97. PubMed ID: 19041665 [TBL] [Abstract][Full Text] [Related]
8. Influence of genetic mutations to atria vulnerability to atrial fibrillation: An in-silico 3D human atria study. Belletti R; Osca J; Romero Perez L; Saiz J Comput Methods Programs Biomed; 2024 Sep; 254():108307. PubMed ID: 38981143 [TBL] [Abstract][Full Text] [Related]
9. Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria. Whittaker DG; Ni H; El Harchi A; Hancox JC; Zhang H PLoS Comput Biol; 2017 Jun; 13(6):e1005593. PubMed ID: 28609477 [TBL] [Abstract][Full Text] [Related]
10. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Bai J; Zhu Y; Lo A; Gao M; Lu Y; Zhao J; Zhang H Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33514068 [TBL] [Abstract][Full Text] [Related]
11. Effects of elevated Homocysteine hormone on electrical activity in the human atrium: A simulation study. Law P; Kharche S; Stott J; Zhang H Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3936-9. PubMed ID: 19964086 [TBL] [Abstract][Full Text] [Related]
12. Pro-arrhythmogenic effects of the S140G KCNQ1 mutation in human atrial fibrillation - insights from modelling. Kharche S; Adeniran I; Stott J; Law P; Boyett MR; Hancox JC; Zhang H J Physiol; 2012 Sep; 590(18):4501-14. PubMed ID: 22508963 [TBL] [Abstract][Full Text] [Related]
13. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria. Gonzales MJ; Vincent KP; Rappel WJ; Narayan SM; McCulloch AD Europace; 2014 Nov; 16 Suppl 4(Suppl 4):iv3-iv10. PubMed ID: 25362167 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural "Fingerprints" of Heart-Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo. Zhao J; Hansen BJ; Wang Y; Csepe TA; Sul LV; Tang A; Yuan Y; Li N; Bratasz A; Powell KA; Kilic A; Mohler PJ; Janssen PML; Weiss R; Simonetti OP; Hummel JD; Fedorov VV J Am Heart Assoc; 2017 Aug; 6(8):. PubMed ID: 28862969 [TBL] [Abstract][Full Text] [Related]
16. Arrhythmia dynamics in computational models of the atria following virtual ablation of re-entrant drivers. Hakim JB; Murphy MJ; Trayanova NA; Boyle PM Europace; 2018 Nov; 20(suppl_3):iii45-iii54. PubMed ID: 30476053 [TBL] [Abstract][Full Text] [Related]
17. Acute effects of alcohol on cardiac electrophysiology and arrhythmogenesis: Insights from multiscale in silico analyses. Sutanto H; Cluitmans MJM; Dobrev D; Volders PGA; Bébarová M; Heijman J J Mol Cell Cardiol; 2020 Sep; 146():69-83. PubMed ID: 32710981 [TBL] [Abstract][Full Text] [Related]
18. Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis. Ni H; Morotti S; Zhang X; Dobrev D; Grandi E Cardiovasc Res; 2023 Oct; 119(13):2294-2311. PubMed ID: 37523735 [TBL] [Abstract][Full Text] [Related]
19. Effects of human atrial ionic remodelling by β-blocker therapy on mechanisms of atrial fibrillation: a computer simulation. Kharche SR; Stary T; Colman MA; Biktasheva IV; Workman AJ; Rankin AC; Holden AV; Zhang H Europace; 2014 Oct; 16(10):1524-33. PubMed ID: 25085203 [TBL] [Abstract][Full Text] [Related]
20. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Courtemanche M; Ramirez RJ; Nattel S Cardiovasc Res; 1999 May; 42(2):477-89. PubMed ID: 10533583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]