These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 21888972)

  • 1. Expert opinion: Responsive polymer nanoparticles in cancer therapy.
    Liechty WB; Peppas NA
    Eur J Pharm Biopharm; 2012 Feb; 80(2):241-6. PubMed ID: 21888972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in the study of tumor pH-responsive polymeric micelles for cancer drug targeting delivery].
    Xu JX; Tang JB; Zhao LH; Shen YQ
    Yao Xue Xue Bao; 2009 Dec; 44(12):1328-35. PubMed ID: 21351464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible Light and pH Responsive Polymer-Coated Mesoporous Silica Nanohybrids for Controlled Release.
    Wang G; Dong J; Yuan T; Zhang J; Wang L; Wang H
    Macromol Biosci; 2016 Jul; 16(7):990-4. PubMed ID: 26938147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery.
    Zeng J; Du P; Liu L; Li J; Tian K; Jia X; Zhao X; Liu P
    Mol Pharm; 2015 Dec; 12(12):4188-99. PubMed ID: 26554495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable polymers for targeted delivery of anti-cancer drugs.
    Doppalapudi S; Jain A; Domb AJ; Khan W
    Expert Opin Drug Deliv; 2016 Jun; 13(6):891-909. PubMed ID: 26983898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy
    Men W; Zhu P; Dong S; Liu W; Zhou K; Bai Y; Liu X; Gong S; Zhang S
    Drug Deliv; 2020 Dec; 27(1):180-190. PubMed ID: 31924103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer.
    Liu Y; Feng L; Liu T; Zhang L; Yao Y; Yu D; Wang L; Zhang N
    Nanoscale; 2014 Mar; 6(6):3231-42. PubMed ID: 24500240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically responsive polymeric nanoparticles for drug delivery.
    Colson YL; Grinstaff MW
    Adv Mater; 2012 Jul; 24(28):3878-86. PubMed ID: 22988558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting.
    Nakayama M; Akimoto J; Okano T
    J Drug Target; 2014 Aug; 22(7):584-99. PubMed ID: 25012066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.
    Wu W; Luo L; Wang Y; Wu Q; Dai HB; Li JS; Durkan C; Wang N; Wang GX
    Theranostics; 2018; 8(11):3038-3058. PubMed ID: 29896301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug delivery systems using polymer nanoassemblies for cancer treatment.
    Bae Y
    Ther Deliv; 2010 Sep; 1(3):361-3. PubMed ID: 22816139
    [No Abstract]   [Full Text] [Related]  

  • 14. Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy.
    Gao GH; Li Y; Lee DS
    J Control Release; 2013 Aug; 169(3):180-4. PubMed ID: 23195533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-responsive polymeric nanoparticles for nanomedicine.
    Crucho CI
    ChemMedChem; 2015 Jan; 10(1):24-38. PubMed ID: 25319803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversibly-regulated drug release using poly(tannic acid) fabricated nanocarriers for reduced secondary side effects in tumor therapy.
    Chen C; Ma T; Tang W; Wang X; Wang Y; Zhuang J; Zhu Y; Wang P
    Nanoscale Horiz; 2020 Jun; 5(6):986-998. PubMed ID: 32322871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release kinetics from bio-polymeric nanoparticles encapsulating protein synthesis inhibitor- cycloheximide, for possible therapeutic applications.
    Verma AK; Sachin K; Saxena A; Bohidar HB
    Curr Pharm Biotechnol; 2005 Apr; 6(2):121-30. PubMed ID: 15853691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug Etoposide.
    Saroj S; Rajput SJ
    Drug Dev Ind Pharm; 2018 Jul; 44(7):1198-1211. PubMed ID: 29412022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.