These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21889053)

  • 1. Cell wall-associated malate dehydrogenase activity from maize roots.
    Hadži-Tašković Šukalović V; Vuletić M; Marković K; Vučinić Z
    Plant Sci; 2011 Oct; 181(4):465-70. PubMed ID: 21889053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and biochemical properties of genetically defined malate dehydrogenase in maize.
    Yang NS; Scandalios JG
    Arch Biochem Biophys; 1974 Apr; 161(2):335-53. PubMed ID: 4365553
    [No Abstract]   [Full Text] [Related]  

  • 3. Plasma membrane-associated malate dehydrogenase of maize (Zea mays L.) roots: native versus recombinant protein.
    Menckhoff L; Mielke-Ehret N; Buck F; Vuletić M; Lüthje S
    J Proteomics; 2013 Mar; 80():66-77. PubMed ID: 23313174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and emerging roots.
    Detarsio E; Maurino VG; Alvarez CE; Müller GL; Andreo CS; Drincovich MF
    Plant Mol Biol; 2008 Nov; 68(4-5):355-67. PubMed ID: 18622731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct demonstration of enol-oxaloacetate as an immediate product of malate oxidation by the mammalian succinate dehydrogenase.
    Panchenko MV; Vinogradov AD
    FEBS Lett; 1991 Jul; 286(1-2):76-8. PubMed ID: 1864383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of NAD-dependent malate dehydrogenases from spinach leaves.
    Cvetić T; Veljović-Jovanović S; Vucinić Z
    Protoplasma; 2008; 232(3-4):247-53. PubMed ID: 18239847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.
    Johnson HS; Hatch MD
    Biochem J; 1970 Sep; 119(2):273-80. PubMed ID: 4395182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of the regulation of mitochondrial malate dehydrogenase by citrate.
    Gelpí JL; Dordal A; Montserrat J; Mazo A; Cortés A
    Biochem J; 1992 Apr; 283 ( Pt 1)(Pt 1):289-97. PubMed ID: 1567375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth.
    Kukavica BM; Veljovicc-Jovanovicc SD; Menckhoff L; Lüthje S
    J Exp Bot; 2012 Jul; 63(12):4631-45. PubMed ID: 22760472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of manganese and copper in vitro and in vivo on peroxidase catalytic cycles.
    Hadži-Tašković Šukalović V; Vuletić M; Veljović-Jovanović S; Vučinić Z
    J Plant Physiol; 2010 Dec; 167(18):1550-7. PubMed ID: 20691497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Malate dehydrogenase and lactate dehydrogenase in trematodes and turbellarians].
    Vykhrestiuk NP; Burenina EA; Iarygina GV
    Zh Evol Biokhim Fiziol; 1986; 22(1):24-9. PubMed ID: 3962529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of aluminium and cAMP on acid phosphatase from the apoplast of barley and maize root cells].
    Fedorovskaia MD; Tikhaia NI
    Izv Akad Nauk Ser Biol; 2003; (2):186-94. PubMed ID: 12712579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADP-malate dehydrogenase from leaves of Zea mays: purification and physical, chemical, and kinetic properties.
    Kagawa T; Bruno PL
    Arch Biochem Biophys; 1988 Feb; 260(2):674-95. PubMed ID: 3341761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo synthesis and developmental control of the multiple gene-controlled malate dehydrogenase isozymes in maize scutella.
    Yang Ning-Sun ; Scandalios JG
    Biochim Biophys Acta; 1975 Apr; 384(2):293-306. PubMed ID: 1125253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of maize NAD-malate dehydrogenase: generation of multiple forms by incubation at pH 5.0.
    Curry RA; Ting IP
    Arch Biochem Biophys; 1975 Apr; 167(2):774-6. PubMed ID: 235904
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors.
    Mika A; Boenisch MJ; Hopff D; Lüthje S
    J Exp Bot; 2010 Mar; 61(3):831-41. PubMed ID: 20032108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal stability of the molecular forms of guinea-pig skeletal muscle cytoplasmic malate dehydrogenase and kinetic mechanism of the thermostable form.
    Sorribas A; Puig J; Cortés A; Bozal J
    Int J Biochem; 1981; 13(3):355-64. PubMed ID: 7215620
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetics of the reduction of oxaloacetate catalyzed by mitochondrial malate dehydrogenase of Toxocara canis muscle.
    Mansini E; Oestreicher EG; Ribeiro LP
    Comp Biochem Physiol B; 1991; 98(2-3):333-7. PubMed ID: 1873988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-photosynthetic 'malic enzyme' from maize: a constituvely expressed enzyme that responds to plant defence inducers.
    Maurino VG; Saigo M; Andreo CS; Drincovich MF
    Plant Mol Biol; 2001 Mar; 45(4):409-20. PubMed ID: 11352460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.