These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21889148)

  • 1. Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data.
    Wei F; Braman JE; Weaver BT; Haut RC
    J Biomech; 2011 Oct; 44(15):2636-41. PubMed ID: 21889148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specimen-specific computational models of ankle sprains produced in a laboratory setting.
    Button KD; Wei F; Meyer EG; Haut RC
    J Biomech Eng; 2013 Apr; 135(4):041001. PubMed ID: 24231896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational stiffness of football shoes influences talus motion during external rotation of the foot.
    Wei F; Meyer EG; Braman JE; Powell JW; Haut RC
    J Biomech Eng; 2012 Apr; 134(4):041002. PubMed ID: 22667677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.
    Wei F; Hunley SC; Powell JW; Haut RC
    Ann Biomed Eng; 2011 Feb; 39(2):756-65. PubMed ID: 21170679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eversion during external rotation of the human cadaver foot produces high ankle sprains.
    Wei F; Post JM; Braman JE; Meyer EG; Powell JW; Haut RC
    J Orthop Res; 2012 Sep; 30(9):1423-9. PubMed ID: 22328337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the flexibility characteristics of the ankle complex due to damage to the lateral collateral ligaments: an in vitro and in vivo study.
    Lapointe SJ; Siegler S; Hillstrom H; Nobilini RR; Mlodzienski A; Techner L
    J Orthop Res; 1997 May; 15(3):331-41. PubMed ID: 9246078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational stiffness of American football shoes affects ankle biomechanics and injury severity.
    Button KD; Braman JE; Davison MA; Wei F; Schaeffer MC; Haut RC
    J Biomech Eng; 2015 Jun; 137(6):061004. PubMed ID: 25751589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Football playing surface and shoe design affect rotational traction.
    Villwock MR; Meyer EG; Powell JW; Fouty AJ; Haut RC
    Am J Sports Med; 2009 Mar; 37(3):518-25. PubMed ID: 19168808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.
    Wei F; Fong DT; Chan KM; Haut RC
    Comput Methods Biomech Biomed Engin; 2015; 18(3):243-8. PubMed ID: 23654290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver.
    Wei F; Villwock MR; Meyer EG; Powell JW; Haut RC
    J Biomech Eng; 2010 Sep; 132(9):091001. PubMed ID: 20815635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional analysis of ankle instability after tibiofibular syndesmosis injuries: a biomechanical experimental study.
    Teramoto A; Kura H; Uchiyama E; Suzuki D; Yamashita T
    Am J Sports Med; 2008 Feb; 36(2):348-52. PubMed ID: 17940143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biomechanics of the ligaments of the unstable ankle joint].
    Hintermann B
    Sportverletz Sportschaden; 1996 Sep; 10(3):48-54. PubMed ID: 9005597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effectiveness of outer stability aids on rotational stability of the ankle joints].
    Müller CC; Hintermann B
    Sportverletz Sportschaden; 1996 Dec; 10(4):84-7. PubMed ID: 9092125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of rocker sole and SACH heel on kinematics in gait.
    Wu WL; Rosenbaum D; Su FC
    Med Eng Phys; 2004 Oct; 26(8):639-46. PubMed ID: 15471691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-based modeling of in situ ankle ligaments with consideration of progressive failure.
    Nie B; Forman JL; Panzer MB; Mait AR; Donlon JP; Kent RW
    J Biomech; 2017 Aug; 61():102-110. PubMed ID: 28757236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ankle joint evertor-invertor muscle torque ratio decrease due to recurrent lateral ligament sprains.
    Pontaga I
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):760-2. PubMed ID: 15288464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dynamic gait analysis of blocked distal tibiofibular joint following syndesmotic complex lesions].
    Vasarhelyi A; Lubitz J; Zeh A; Wohlrab D; Hein W; Mittlmeier T
    Z Orthop Unfall; 2009; 147(4):439-44. PubMed ID: 19693740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching for the "sweet spot": the foot rotation and parallel engagement of ankle ligaments in maximizing injury tolerance.
    Nie B; Forman JL; Mait AR; Donlon JP; Panzer MB; Kent RW
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1937-1945. PubMed ID: 28634682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ankle-foot orthoses on ankle and foot kinematics in patient with ankle osteoarthritis.
    Huang YC; Harbst K; Kotajarvi B; Hansen D; Koff MF; Kitaoka HB; Kaufman KR
    Arch Phys Med Rehabil; 2006 May; 87(5):710-6. PubMed ID: 16635635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.