BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 21889155)

  • 21. The dynamic interaction of water with four dental impression materials during cure.
    Hosseinpour D; Berg JC
    J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation and stabilization of elemental mercury from coal-fired flue gas by sulfur monobromide.
    Qu Z; Yan N; Liu P; Guo Y; Jia J
    Environ Sci Technol; 2010 May; 44(10):3889-94. PubMed ID: 20408537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.
    Yu J; Ma Y; Balbuena PB
    Langmuir; 2012 May; 28(21):8064-71. PubMed ID: 22545572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration.
    Nyambura MG; Mugera GW; Felicia PL; Gathura NP
    J Environ Manage; 2011 Mar; 92(3):655-64. PubMed ID: 20970918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laboratory study of the displacement coalbed CH4 process and efficiency of CO2 and N2 injection.
    Wang L; Cheng Y; Wang Y
    ScientificWorldJournal; 2014; 2014():242947. PubMed ID: 24741346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NaKA sorbents with high CO(2)-over-N(2) selectivity and high capacity to adsorb CO(2).
    Liu Q; Mace A; Bacsik Z; Sun J; Laaksonen A; Hedin N
    Chem Commun (Camb); 2010 Jul; 46(25):4502-4. PubMed ID: 20428579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.
    Liu J; Wang Y; Benin AI; Jakubczak P; Willis RR; LeVan MD
    Langmuir; 2010 Sep; 26(17):14301-7. PubMed ID: 20707342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.
    Kim Y; Wan J; Kneafsey TJ; Tokunaga TK
    Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.
    Douskova I; Doucha J; Livansky K; Machat J; Novak P; Umysova D; Zachleder V; Vitova M
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):179-85. PubMed ID: 19096837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations.
    Prasad BR; Senapati S
    J Phys Chem B; 2009 Apr; 113(14):4739-43. PubMed ID: 19281169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.
    Fitzgerald JE; Robinson RL; Gasem KA
    Langmuir; 2006 Nov; 22(23):9610-8. PubMed ID: 17073487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the gas-solids contact efficiency in a fluidized bed of CO2 adsorbent fine particles.
    Valverde JM; Pontiga F; Soria-Hoyo C; Quintanilla MA; Moreno H; Duran FJ; Espin MJ
    Phys Chem Chem Phys; 2011 Sep; 13(33):14906-9. PubMed ID: 21748143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological removal of NOx from flue gas.
    Kumaraswamy R; Muyzer G; Kuenen JG; Loosdrecht MC
    Water Sci Technol; 2004; 50(6):9-15. PubMed ID: 15536984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO
    Hassanpouryouzband A; Yang J; Tohidi B; Chuvilin E; Istomin V; Bukhanov B; Cheremisin A
    Environ Sci Technol; 2018 Apr; 52(7):4324-4330. PubMed ID: 29513532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dual-use of DBD plasma for simultaneous NO(x) and SO(2) removal from coal-combustion flue gas.
    Obradović BM; Sretenović GB; Kuraica MM
    J Hazard Mater; 2011 Jan; 185(2-3):1280-6. PubMed ID: 21044816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.
    Chen C; Zhang N; Li W; Song Y
    Environ Sci Technol; 2015 Dec; 49(24):14680-7. PubMed ID: 26509282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous desulfurization and denitrification from flue gas by Ferrate(VI).
    Zhao Y; Han Y; Ma T; Guo T
    Environ Sci Technol; 2011 May; 45(9):4060-5. PubMed ID: 21466216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gas solubility in hydrophobic confinement.
    Luzar A; Bratko D
    J Phys Chem B; 2005 Dec; 109(47):22545-52. PubMed ID: 16853936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.