These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21889184)

  • 1. Embodied energy comparison of surface water and groundwater supply options.
    Mo W; Zhang Q; Mihelcic JR; Hokanson DR
    Water Res; 2011 Nov; 45(17):5577-86. PubMed ID: 21889184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.
    Mo W; Nasiri F; Eckelman MJ; Zhang Q; Zimmerman JB
    Environ Sci Technol; 2010 Dec; 44(24):9516-21. PubMed ID: 21105699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A provider-based water planning and management model--WaterSim 4.0--for the Phoenix Metropolitan Area.
    Sampson DA; Escobar V; Tschudi MK; Lant T; Gober P
    J Environ Manage; 2011 Oct; 92(10):2596-610. PubMed ID: 21719188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receiving water quality assessment: comparison between simplified and detailed integrated urban modelling approaches.
    Mannina G; Viviani G
    Water Sci Technol; 2010; 62(10):2301-12. PubMed ID: 21076216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California.
    Mo W; Wang R; Zimmerman JB
    Environ Sci Technol; 2014 May; 48(10):5883-91. PubMed ID: 24730467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined consideration for decentralised non-potable water supply from local groundwater and nutrient load reduction in urban drainage.
    Barron O; Barr A; Donn M; Pollock D
    Water Sci Technol; 2011; 63(6):1289-97. PubMed ID: 21436569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of roadway stormwater system residuals for reuse and disposal options.
    Jang YC; Jain P; Tolaymat T; Dubey B; Singh S; Townsend T
    Sci Total Environ; 2010 Mar; 408(8):1878-87. PubMed ID: 20163826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic analyses to identify wellfield withdrawal effects on surface-water and groundwater in Miami-Dade County, Florida.
    Swain E
    J Environ Manage; 2012 Dec; 113():15-21. PubMed ID: 22996000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water and energy linkages for groundwater exploitation: a case study of Gujarat State, India.
    Gupta RK
    Water Sci Technol; 2002; 45(8):151-66. PubMed ID: 12019815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison study of two different control criteria for the real-time management of urban groundwater works.
    Bauser G; Hendricks Franssen HJ; Stauffer F; Kaiser HP; Kuhlmann U; Kinzelbach W
    J Environ Manage; 2012 Aug; 105():21-9. PubMed ID: 22516870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of spatial-temporal patterns of surface and ground water qualities and factors influencing management strategy of groundwater system in an urban river corridor of Nepal.
    Kannel PR; Lee S; Lee YS
    J Environ Manage; 2008 Mar; 86(4):595-604. PubMed ID: 17287068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect water withdrawals for U.S. industrial sectors.
    Blackhurst BM; Hendrickson C; Vidal JS
    Environ Sci Technol; 2010 Mar; 44(6):2126-30. PubMed ID: 20141104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface applied water treatment residuals affect bioavailable phosphorus losses in Florida sands.
    Oladeji OO; O'Connor GA; Brinton SR
    J Environ Manage; 2008 Sep; 88(4):1593-600. PubMed ID: 17868975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands).
    Rozemeijer JC; Broers HP
    Environ Pollut; 2007 Aug; 148(3):695-706. PubMed ID: 17418466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Historical reconstruction of wastewater and land use impacts to groundwater used for public drinking water: exposure assessment using chemical data and GIS.
    Swartz CH; Rudel RA; Kachajian JR; Brody JG
    J Expo Anal Environ Epidemiol; 2003 Sep; 13(5):403-16. PubMed ID: 12973368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Territorial approach to increased energy consumption of water extraction from depletion of a highlands Mexican aquifer.
    Fonseca CR; Esteller MV; Díaz-Delgado C
    J Environ Manage; 2013 Oct; 128():920-30. PubMed ID: 23892133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling groundwater pumping online.
    Zekri S
    J Environ Manage; 2009 Aug; 90(11):3581-8. PubMed ID: 19674830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the risks of methyl tertiary butyl ether (MTBE) pollution of urban groundwater.
    Chisala BN; Tait NG; Lerner DN
    J Contam Hydrol; 2007 Apr; 91(1-2):128-45. PubMed ID: 17141916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The climate footprint: a practical tool to address climate change.
    Janse T; Wiers P
    Water Sci Technol; 2007; 56(4):157-63. PubMed ID: 17851216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design.
    Chiu YC; Nishikawa T; Martin P
    Ground Water; 2012; 50(1):103-17. PubMed ID: 21635245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.