These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21889465)

  • 1. Submolecular-scale imaging of α-helices and C-terminal domains of tubulins by frequency modulation atomic force microscopy in liquid.
    Asakawa H; Ikegami K; Setou M; Watanabe N; Tsukada M; Fukuma T
    Biophys J; 2011 Sep; 101(5):1270-6. PubMed ID: 21889465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM.
    Keya JJ; Inoue D; Suzuki Y; Kozai T; Ishikuro D; Kodera N; Uchihashi T; Kabir AMR; Endo M; Sada K; Kakugo A
    Sci Rep; 2017 Jul; 7(1):6166. PubMed ID: 28733669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes.
    Detrich HW; Parker SK; Williams RC; Nogales E; Downing KH
    J Biol Chem; 2000 Nov; 275(47):37038-47. PubMed ID: 10956651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution imaging of immunoglobulin G antibodies and other biomolecules using amplitude modulation atomic force microscopy in air.
    Santos S; Thomson NH
    Methods Mol Biol; 2011; 736():61-79. PubMed ID: 21660721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule assembly in cold-adapted organisms: functional properties and structural adaptations of tubulins from antarctic fishes.
    Detrich HW
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):501-13. PubMed ID: 9406432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of tubulin structural domains in Nicotiana tabacum microtubules probed by monoclonal antibodies.
    Smertenko A; Blume Y; Viklický V; Dráber P
    Eur J Cell Biol; 1997 Feb; 72(2):104-12. PubMed ID: 9157006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.
    Moreno C; Stetsovych O; Shimizu TK; Custance O
    Nano Lett; 2015 Apr; 15(4):2257-62. PubMed ID: 25756297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posttranslational modification of brain tubulins from the Antarctic fish Notothenia coriiceps: reduced C-terminal glutamylation correlates with efficient microtubule assembly at low temperature.
    Redeker V; Frankfurter A; Parker SK; Rossier J; Detrich HW
    Biochemistry; 2004 Sep; 43(38):12265-74. PubMed ID: 15379565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization of Antarctic fish tubulins at low temperatures: role of carboxy-terminal domains.
    Singer WD; Parker SK; Himes RH; Detrich HW
    Biochemistry; 1994 Dec; 33(51):15389-96. PubMed ID: 7803402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy.
    Martinez-Martin D; Carrasco C; Hernando-Perez M; de Pablo PJ; Gomez-Herrero J; Perez R; Mateu MG; Carrascosa JL; Kiracofe D; Melcher J; Raman A
    PLoS One; 2012; 7(1):e30204. PubMed ID: 22295076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submolecular resolution of single macromolecules with atomic force microscopy.
    Czajkowsky DM; Shao Z
    FEBS Lett; 1998 Jun; 430(1-2):51-4. PubMed ID: 9678593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition.
    Mishima M; Maesaki R; Kasa M; Watanabe T; Fukata M; Kaibuchi K; Hakoshima T
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10346-51. PubMed ID: 17563362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy: a forceful way with single molecules.
    Engel A; Gaub HE; Müller DJ
    Curr Biol; 1999 Feb; 9(4):R133-6. PubMed ID: 10074420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers.
    Sheikh KH; Giordani C; Kilpatrick JI; Jarvis SP
    Langmuir; 2011 Apr; 27(7):3749-53. PubMed ID: 21370902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing molecular-level surface structure of amyloid fibrils in liquid by means of frequency modulation atomic force microscopy.
    Fukuma T; Mostaert AS; Serpell LC; Jarvis SP
    Nanotechnology; 2008 Sep; 19(38):384010. PubMed ID: 21832569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells.
    Zhou X; Xu Z; Li A; Zhang Z; Xu S
    J Biomol Struct Dyn; 2019 Sep; 37(15):4080-4091. PubMed ID: 30451089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.