BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21889515)

  • 1. Statistical potentials for hairpin and internal loops improve the accuracy of the predicted RNA structure.
    Gardner DP; Ren P; Ozer S; Gutell RR
    J Mol Biol; 2011 Oct; 413(2):473-83. PubMed ID: 21889515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.
    Wu JC; Gardner DP; Ozer S; Gutell RR; Ren P
    J Mol Biol; 2009 Aug; 391(4):769-83. PubMed ID: 19540243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting stacking interaction parameters for RNA from the data set of native structures.
    Dima RI; Hyeon C; Thirumalai D
    J Mol Biol; 2005 Mar; 347(1):53-69. PubMed ID: 15733917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation.
    Layton DM; Bundschuh R
    Nucleic Acids Res; 2005; 33(2):519-24. PubMed ID: 15673712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure.
    Reinharz V; Major F; Waldispühl J
    Bioinformatics; 2012 Jun; 28(12):i207-14. PubMed ID: 22689763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences.
    Harmanci AO; Sharma G; Mathews DH
    BMC Bioinformatics; 2011 Apr; 12():108. PubMed ID: 21507242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.
    Parlea LG; Sweeney BA; Hosseini-Asanjan M; Zirbel CL; Leontis NB
    Methods; 2016 Jul; 103():99-119. PubMed ID: 27125735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact learning of RNA energy parameters from structure.
    Chitsaz H; Aminisharifabad M
    J Comput Biol; 2015 Jun; 22(6):463-73. PubMed ID: 25756654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a sophisticated SCFG design for RNA secondary structure prediction.
    Nebel ME; Scheid A
    Theory Biosci; 2011 Dec; 130(4):313-36. PubMed ID: 22135038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic characterization of RNA 2 × 3 nucleotide internal loops.
    Hausmann NZ; Znosko BM
    Biochemistry; 2012 Jul; 51(26):5359-68. PubMed ID: 22720720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The energetics of small internal loops in RNA.
    Schroeder SJ; Burkard ME; Turner DH
    Biopolymers; 1999-2000; 52(4):157-67. PubMed ID: 11295748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved free energy parameters for RNA pseudoknotted secondary structure prediction.
    Andronescu MS; Pop C; Condon AE
    RNA; 2010 Jan; 16(1):26-42. PubMed ID: 19933322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic characterization of single mismatches found in naturally occurring RNA.
    Davis AR; Znosko BM
    Biochemistry; 2007 Nov; 46(46):13425-36. PubMed ID: 17958380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns.
    Klosterman PS; Hendrix DK; Tamura M; Holbrook SR; Brenner SE
    Nucleic Acids Res; 2004; 32(8):2342-52. PubMed ID: 15121895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments.
    Seemann SE; Gorodkin J; Backofen R
    Nucleic Acids Res; 2008 Nov; 36(20):6355-62. PubMed ID: 18836192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ISFOLD: structure prediction of base pairs in non-helical RNA motifs from isostericity signatures in their sequence alignments.
    Mokdad A; Frankel AD
    J Biomol Struct Dyn; 2008 Apr; 25(5):467-72. PubMed ID: 18282001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic modeling of RNA pseudoknotted structures: a grammatical approach.
    Cai L; Malmberg RL; Wu Y
    Bioinformatics; 2003; 19 Suppl 1():i66-73. PubMed ID: 12855439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RnaPredict--an evolutionary algorithm for RNA secondary structure prediction.
    Wiese K; Deschenes A; Hendriks A
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(1):25-41. PubMed ID: 18245873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.