These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21889534)

  • 1. Mechanism of inhibition of arginine kinase by flavonoids consistent with thermodynamics of docking simulation.
    Wang HR; Zhu WJ; Wang XY
    Int J Biol Macromol; 2011 Dec; 49(5):985-91. PubMed ID: 21889534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of rutin on arginine kinase: inhibition kinetics and thermodynamics merging with docking simulation.
    Wu XQ; Zhu WJ; Lü ZR; Xia Y; Yang JM; Zou F; Wang XY
    Int J Biol Macromol; 2009 Mar; 44(2):149-55. PubMed ID: 19100283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.
    Zhu WJ; Li M; Wang XY
    Int J Biol Macromol; 2007 Dec; 41(5):564-71. PubMed ID: 17765964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells.
    Lee LT; Huang YT; Hwang JJ; Lee PP; Ke FC; Nair MP; Kanadaswam C; Lee MT
    Anticancer Res; 2002; 22(3):1615-27. PubMed ID: 12168845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Inhibitory Effects of Cu(2+) on Exopalaemon carinicauda Arginine Kinase via Inhibition Kinetics and Molecular Dynamics Simulations.
    Si YX; Lee J; Yin SJ; Gu XX; Park YD; Qian GY
    Appl Biochem Biotechnol; 2015 Jun; 176(4):1217-36. PubMed ID: 25935224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: an overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies.
    Das S; Bora N; Rohman MA; Sharma R; Jha AN; Singha Roy A
    Phys Chem Chem Phys; 2018 Aug; 20(33):21668-21684. PubMed ID: 30101248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tryptophane residues of dimeric arginine kinase: roles of Trp-208 and Trp-218 in active site and conformation stability.
    Guo Q; Zhao F; Guo SY; Wang X
    Biochimie; 2004 Jun; 86(6):379-86. PubMed ID: 15358054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Ag+ on arginine kinase: inhibition kinetics.
    Sheng Q; Lu ZR; Mu H; Zou HC; Zou F; Yao SJ
    J Biomol Struct Dyn; 2009 Aug; 27(1):59-64. PubMed ID: 19492863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the binding of luteolin to bovine serum albumin.
    Yang Y; Hu Q; Fan Y; Shen H
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):432-6. PubMed ID: 17719269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage.
    Iwanami K; Iseno S; Uda K; Suzuki T
    Gene; 2009 May; 437(1-2):80-7. PubMed ID: 19268694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino acid residue L113 is involved in arginine kinase activity and structural stability.
    Li F; Wu QY; Wang XY
    Int J Biol Macromol; 2013 Jan; 52():198-205. PubMed ID: 23000252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking.
    Yan J; Zhang G; Pan J; Wang Y
    Int J Biol Macromol; 2014 Mar; 64():213-23. PubMed ID: 24333230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the amino acid residue P272 of arginine kinase is involved in its activity, structure and stability.
    Wu QY; Li F; Wang XY
    Int J Biol Macromol; 2008 Nov; 43(4):367-72. PubMed ID: 18703083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles.
    Mehranfar F; Bordbar AK; Parastar H
    J Photochem Photobiol B; 2013 Oct; 127():100-7. PubMed ID: 23973780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of intra-subunit interactions on the dimeric arginine kinase activity and structural stability.
    Wu QY; Jin KZ; Li F; Hu ZQ; Wang XY
    Int J Biol Macromol; 2011 Nov; 49(4):822-31. PubMed ID: 21839768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study.
    Moradi M; Divsalar A; Saboury AA; Ghalandari B; Harifi AR
    J Biomol Struct Dyn; 2015; 33(10):2255-66. PubMed ID: 25586906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of two arginine kinases from the parasitic insect Ctenocephalides felis.
    Werr M; Cramer J; Ilg T
    Insect Biochem Mol Biol; 2009 Sep; 39(9):634-45. PubMed ID: 19595766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.
    Liu T; Wang X
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):779-86. PubMed ID: 20929927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.