These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21889547)

  • 1. Expanding the cellular molecular chaperone network through the ubiquitous cochaperones.
    Echtenkamp FJ; Freeman BC
    Biochim Biophys Acta; 2012 Mar; 1823(3):668-73. PubMed ID: 21889547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones.
    Sanchez ER
    Biochim Biophys Acta; 2012 Mar; 1823(3):722-9. PubMed ID: 22155719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Hsp90 in protein complex assembly.
    Makhnevych T; Houry WA
    Biochim Biophys Acta; 2012 Mar; 1823(3):674-82. PubMed ID: 21945180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and function of diverse Hsp90 homologs and cochaperone proteins.
    Johnson JL
    Biochim Biophys Acta; 2012 Mar; 1823(3):607-13. PubMed ID: 22008467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.
    Li J; Soroka J; Buchner J
    Biochim Biophys Acta; 2012 Mar; 1823(3):624-35. PubMed ID: 21951723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p23 and Aha1.
    Rehn AB; Buchner J
    Subcell Biochem; 2015; 78():113-31. PubMed ID: 25487019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp90 in non-mammalian metazoan model systems.
    Haslbeck V; Kaiser CJ; Richter K
    Biochim Biophys Acta; 2012 Mar; 1823(3):712-21. PubMed ID: 21983200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric Mechanism of the Hsp90 Chaperone Interactions with Cochaperones and Client Proteins by Modulating Communication Spines of Coupled Regulatory Switches: Integrative Atomistic Modeling of Hsp90 Signaling in Dynamic Interaction Networks.
    Astl L; Stetz G; Verkhivker GM
    J Chem Inf Model; 2020 Jul; 60(7):3616-3631. PubMed ID: 32519853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.
    Blacklock K; Verkhivker GM
    PLoS One; 2014; 9(1):e86547. PubMed ID: 24466147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p23 and Aha1: Distinct Functions Promote Client Maturation.
    Biebl MM; Buchner J
    Subcell Biochem; 2023; 101():159-187. PubMed ID: 36520307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions.
    Dean ME; Johnson JL
    Cell Stress Chaperones; 2021 Jan; 26(1):3-13. PubMed ID: 33037995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway.
    Cintron NS; Toft D
    J Biol Chem; 2006 Sep; 281(36):26235-44. PubMed ID: 16854979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality control and fate determination of Hsp90 client proteins.
    Theodoraki MA; Caplan AJ
    Biochim Biophys Acta; 2012 Mar; 1823(3):683-8. PubMed ID: 21871502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global functional map of the p23 molecular chaperone reveals an extensive cellular network.
    Echtenkamp FJ; Zelin E; Oxelmark E; Woo JI; Andrews BJ; Garabedian M; Freeman BC
    Mol Cell; 2011 Jul; 43(2):229-41. PubMed ID: 21777812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins: Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes.
    Verkhivker GM
    J Mol Biol; 2022 Sep; 434(17):167506. PubMed ID: 35202628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1.
    Panaretou B; Siligardi G; Meyer P; Maloney A; Sullivan JK; Singh S; Millson SH; Clarke PA; Naaby-Hansen S; Stein R; Cramer R; Mollapour M; Workman P; Piper PW; Pearl LH; Prodromou C
    Mol Cell; 2002 Dec; 10(6):1307-18. PubMed ID: 12504007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action.
    Wickner S; Nguyen TL; Genest O
    Annu Rev Microbiol; 2021 Oct; 75():719-739. PubMed ID: 34375543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37.
    Roiniotis J; Masendycz P; Ho S; Scholz GM
    Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc37 goes beyond Hsp90 and kinases.
    MacLean M; Picard D
    Cell Stress Chaperones; 2003; 8(2):114-9. PubMed ID: 14627196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.