These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21889640)

  • 1. Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chim Acta; 2011 Oct; 703(2):239-44. PubMed ID: 21889640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding site characteristics of 17beta-estradiol imprinted polymers.
    Wei S; Mizaikoff B
    Biosens Bioelectron; 2007 Sep; 23(2):201-9. PubMed ID: 17540554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide.
    Liu R; Guan G; Wang S; Zhang Z
    Analyst; 2011 Jan; 136(1):184-90. PubMed ID: 20886153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the molecularly imprinted polymers with methyl-testosterone as the template.
    Yang M; Gu W; Sun L; Zhang F; Ling Y; Chu X; Wang D
    Talanta; 2010 Apr; 81(1-2):156-61. PubMed ID: 20188902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives.
    Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON
    Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous batch rebinding and selectivity studies on sucrose imprinted polymers.
    Kirk C; Jensen M; Kjaer CN; Smedskjaer MM; Larsen KL; Wimmer R; Yu D
    Biosens Bioelectron; 2009 Nov; 25(3):623-8. PubMed ID: 19223166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte.
    Curcio P; Zandanel C; Wagner A; Mioskowski C; Baati R
    Macromol Biosci; 2009 Jun; 9(6):596-604. PubMed ID: 19434676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials.
    Li J; Kendig CE; Nesterov EE
    J Am Chem Soc; 2007 Dec; 129(51):15911-8. PubMed ID: 18044891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of nitrobenzene compounds in surface water by ion mobility spectrometry coupled with molecularly imprinted polymers.
    Lu W; Li H; Meng Z; Liang X; Xue M; Wang Q; Dong X
    J Hazard Mater; 2014 Sep; 280():588-94. PubMed ID: 25222927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent film sensors based on SAMs of pyrene derivatives for detecting nitroaromatics in aqueous solutions.
    Zhang S; Ding L; Lü F; Liu T; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():31-7. PubMed ID: 22750335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
    Ma Y; Li H; Peng S; Wang L
    Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards water compatible MIPs for sensing in aqueous media.
    Horemans F; Weustenraed A; Spivak D; Cleij TJ
    J Mol Recognit; 2012 Jun; 25(6):344-51. PubMed ID: 22641532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media.
    Tan CJ; Tong YW
    Anal Chem; 2007 Jan; 79(1):299-306. PubMed ID: 17194154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective molecularly imprinted stationary phases for bisphenol A analysis prepared by modified precipitation polymerization.
    Jiang M; Shi Y; Zhang RL; Shi CH; Peng Y; Huang Z; Lu B
    J Sep Sci; 2009 Oct; 32(19):3265-73. PubMed ID: 19718690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building fluorescent sensors for carbohydrates using template-directed polymerizations.
    Gao S; Wang W; Wang B
    Bioorg Chem; 2001 Oct; 29(5):308-20. PubMed ID: 16256700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers.
    He JF; Zhu QH; Deng QY
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1297-305. PubMed ID: 17142092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2,4-Dimethylphenol imprinted polymers as a solid-phase extraction sorbent for class-selective extraction of phenolic compounds from environmental water.
    Qi P; Wang J; Jin J; Su F; Chen J
    Talanta; 2010 Jun; 81(4-5):1630-5. PubMed ID: 20441950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a group selective molecularly imprinted polymers based solid phase extraction of malachite green from fish water and fish feed samples.
    Li YH; Yang T; Qi XL; Qiao YW; Deng AP
    Anal Chim Acta; 2008 Aug; 624(2):317-25. PubMed ID: 18706339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres.
    Guan G; Liu R; Mei Q; Zhang Z
    Chemistry; 2012 Apr; 18(15):4692-8. PubMed ID: 22392767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.