These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21889805)

  • 1. Training speech-in-noise perception in mainstream school children.
    Millward KE; Hall RL; Ferguson MA; Moore DR
    Int J Pediatr Otorhinolaryngol; 2011 Nov; 75(11):1408-17. PubMed ID: 21889805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.
    Loo JH; Rosen S; Bamiou DE
    Ear Hear; 2016; 37(1):38-47. PubMed ID: 26418044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships among speech perception, production, language, hearing loss, and age in children with impaired hearing.
    Blamey PJ; Sarant JZ; Paatsch LE; Barry JG; Bow CP; Wales RJ; Wright M; Psarros C; Rattigan K; Tooher R
    J Speech Lang Hear Res; 2001 Apr; 44(2):264-85. PubMed ID: 11324650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do you hear the noise? The German matrix sentence test with a fixed noise level in subjects with normal hearing and hearing impairment.
    Wardenga N; Batsoulis C; Wagener KC; Brand T; Lenarz T; Maier H
    Int J Audiol; 2015; 54 Suppl 2():71-9. PubMed ID: 26555195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.
    Yeend I; Beach EF; Sharma M; Dillon H
    Hear Res; 2017 Sep; 353():224-236. PubMed ID: 28780178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of the LiSN & learn auditory training software for deficit-specific remediation of binaural processing deficits in children: preliminary findings.
    Cameron S; Dillon H
    J Am Acad Audiol; 2011; 22(10):678-96. PubMed ID: 22212767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to Melody, Rhythm, and Beat in Supporting Speech-in-Noise Perception in Young Adults.
    Yates KM; Moore DR; Amitay S; Barry JG
    Ear Hear; 2019; 40(2):358-367. PubMed ID: 29965864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between high-frequency pure-tone hearing loss, hearing in noise test (HINT) thresholds, and the articulation index.
    Vermiglio AJ; Soli SD; Freed DJ; Fisher LM
    J Am Acad Audiol; 2012; 23(10):779-88. PubMed ID: 23169195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Relationship Between General Auditory Sensitivity and Speech Perception: An Examination of Pitch and Lexical Tone Perception in 4- to 6-Year-Old Children.
    Wong P; Cheng MW
    J Speech Lang Hear Res; 2020 Feb; 63(2):487-498. PubMed ID: 32073343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech in noise perception improved by training fine auditory discrimination: far and applicable transfer of perceptual learning.
    Gao X; Yan T; Huang T; Li X; Zhang YX
    Sci Rep; 2020 Nov; 10(1):19320. PubMed ID: 33168921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: implications for cochlear implants.
    Loebach JL; Pisoni DB; Svirsky MA
    Ear Hear; 2009 Dec; 30(6):662-74. PubMed ID: 19773659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech reception with different bilateral directional processing schemes: Influence of binaural hearing, audiometric asymmetry, and acoustic scenario.
    Neher T; Wagener KC; Latzel M
    Hear Res; 2017 Sep; 353():36-48. PubMed ID: 28783570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Danish hearing in noise test.
    Nielsen JB; Dau T
    Int J Audiol; 2011 Mar; 50(3):202-8. PubMed ID: 21319937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification and cue weighting of multidimensional stimuli with speech-like cues for young normal hearing and elderly hearing-impaired listeners.
    Wang X; Humes LE
    Ear Hear; 2008 Oct; 29(5):725-45. PubMed ID: 18596642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory training of speech recognition with interrupted and continuous noise maskers by children with hearing impairment.
    Sullivan JR; Thibodeau LM; Assmann PF
    J Acoust Soc Am; 2013 Jan; 133(1):495-501. PubMed ID: 23297921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perception of lexical stress cued by low-frequency pitch and insights into speech perception in noise for cochlear implant users and normal hearing adults.
    Dincer D'Alessandro H; Mancini P
    Eur Arch Otorhinolaryngol; 2019 Oct; 276(10):2673-2680. PubMed ID: 31177325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digit training in noise can improve cochlear implant users' speech understanding in noise.
    Oba SI; Fu QJ; Galvin JJ
    Ear Hear; 2011; 32(5):573-81. PubMed ID: 21389857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise.
    Hopkins K; Moore BC
    J Acoust Soc Am; 2011 Jul; 130(1):334-49. PubMed ID: 21786903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.