BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21889854)

  • 1. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy.
    Mamani-Linares LW; Gallo C; Alomar D
    Meat Sci; 2012 Feb; 90(2):378-85. PubMed ID: 21889854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relevance of different near infrared technologies and sample treatments for predicting meat quality traits in commercial beef cuts.
    De Marchi M; Penasa M; Cecchinato A; Bittante G
    Meat Sci; 2013 Feb; 93(2):329-35. PubMed ID: 23098602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy.
    Cecchinato A; De Marchi M; Penasa M; Casellas J; Schiavon S; Bittante G
    J Anim Sci; 2012 Feb; 90(2):429-38. PubMed ID: 21948610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usefulness of near-infrared reflectance (NIR) spectroscopy and chemometrics to discriminate fishmeal batches made with different fish species.
    Cozzolino D; Chree A; Scaife JR; Murray I
    J Agric Food Chem; 2005 Jun; 53(11):4459-63. PubMed ID: 15913311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The determination of beef tenderness using near-infrared spectroscopy].
    Zhao JW; Zhai JM; Liu MH; Cai JR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):640-2. PubMed ID: 16836128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of adult steers (oxen) and young cattle ground meat samples by near infrared reflectance spectroscopy (NIRS).
    Prieto N; Andrés S; Giráldez FJ; Mantecón AR; Lavín P
    Meat Sci; 2008 May; 79(1):198-201. PubMed ID: 22062613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared reflectance spectroscopy predictions as indicator traits in breeding programs for enhanced beef quality.
    Cecchinato A; De Marchi M; Penasa M; Albera A; Bittante G
    J Anim Sci; 2011 Sep; 89(9):2687-95. PubMed ID: 21454870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy.
    Liao YT; Fan YX; Cheng F
    Meat Sci; 2010 Dec; 86(4):901-7. PubMed ID: 20728281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy.
    De Marchi M; Riovanto R; Penasa M; Cassandro M
    Meat Sci; 2012 Mar; 90(3):653-7. PubMed ID: 22082651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible and near infrared spectroscopy as an authentication tool: Preliminary investigation of the prediction of the ageing time of beef steaks.
    Moran L; Andres S; Allen P; Moloney AP
    Meat Sci; 2018 Aug; 142():52-58. PubMed ID: 29660544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near infrared spectroscopy as an on-line method to quantitatively determine glycogen and predict ultimate pH in pre rigor bovine M. longissimus dorsi.
    Lomiwes D; Reis MM; Wiklund E; Young OA; North M
    Meat Sci; 2010 Dec; 86(4):999-1004. PubMed ID: 20826070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.
    Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ
    Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early on-line classification of beef carcasses based on ultimate pH by near infrared spectroscopy.
    Reis MM; Rosenvold K
    Meat Sci; 2014 Feb; 96(2 Pt A):862-9. PubMed ID: 24211544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef.
    Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G
    Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of near infrared reflectance spectroscopy to predict chemical composition with a wide range of variability in beef.
    Su H; Sha K; Zhang L; Zhang Q; Xu Y; Zhang R; Li H; Sun B
    Meat Sci; 2014 Oct; 98(2):110-4. PubMed ID: 24927045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis.
    Kamruzzaman M; ElMasry G; Sun DW; Allen P
    Anal Chim Acta; 2012 Feb; 714():57-67. PubMed ID: 22244137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef.
    Morsy N; Sun DW
    Meat Sci; 2013 Feb; 93(2):292-302. PubMed ID: 23040181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of geographical origins and prediction of δ13C and δ15N values of lamb meat by near infrared reflectance spectroscopy.
    Sun S; Guo B; Wei Y; Fan M
    Food Chem; 2012 Nov; 135(2):508-14. PubMed ID: 22868121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of freshness decay of minced beef stored in high-oxygen modified atmosphere packaged at different temperatures using NIR and MIR spectroscopy.
    Sinelli N; Limbo S; Torri L; Di Egidio V; Casiraghi E
    Meat Sci; 2010 Nov; 86(3):748-52. PubMed ID: 20655668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a system for classification of pork loins for tenderness using visible and near-infrared reflectance spectroscopy.
    Shackelford SD; King DA; Wheeler TL
    J Anim Sci; 2011 Nov; 89(11):3803-8. PubMed ID: 21680788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.