BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21890007)

  • 21. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile.
    Dingle T; Wee S; Mulvey GL; Greco A; Kitova EN; Sun J; Lin S; Klassen JS; Palcic MM; Ng KK; Armstrong GD
    Glycobiology; 2008 Sep; 18(9):698-706. PubMed ID: 18509107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxin A-negative, toxin B-positive Clostridium difficile.
    Drudy D; Fanning S; Kyne L
    Int J Infect Dis; 2007 Jan; 11(1):5-10. PubMed ID: 16857405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic rearrangements in the pathogenicity locus of Clostridium difficile strain 8864--implications for transcription, expression and enzymatic activity of toxins A and B.
    Soehn F; Wagenknecht-Wiesner A; Leukel P; Kohl M; Weidmann M; von Eichel-Streiber C; Braun V
    Mol Gen Genet; 1998 May; 258(3):222-32. PubMed ID: 9645428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.
    Olling A; Seehase S; Minton NP; Tatge H; Schröter S; Kohlscheen S; Pich A; Just I; Gerhard R
    Microb Pathog; 2012 Jan; 52(1):92-100. PubMed ID: 22107906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging toxin A-B+ variant strain of Clostridium difficile responsible for pseudomembranous colitis at a tertiary care hospital in Korea.
    Shin BM; Kuak EY; Yoo SJ; Shin WC; Yoo HM
    Diagn Microbiol Infect Dis; 2008 Apr; 60(4):333-7. PubMed ID: 18082994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of mutated Clostridium difficile toxin A for determination of glucosyltransferase-dependent effects.
    Teichert M; Tatge H; Schoentaube J; Just I; Gerhard R
    Infect Immun; 2006 Oct; 74(10):6006-10. PubMed ID: 16988280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Down-regulation of interleukin-16 in human mast cells HMC-1 by Clostridium difficile toxins A and B.
    Gerhard R; Queisser S; Tatge H; Meyer G; Dittrich-Breiholz O; Kracht M; Feng H; Just I
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Mar; 383(3):285-95. PubMed ID: 21267712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retracted: Apoptosis of CT26 colorectal cancer cells induced by Clostridium difficile toxin A stimulates potent anti-tumor immunity.
    Tian Y; Huang T; Li G; Liu J; Wang X; Feng H; Wang J
    Biochem Biophys Res Commun; 2012 May; 422(1):15-21. PubMed ID: 22548800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxin A of the nosocomial pathogen Clostridium difficile induces primary effects in the proteome of HEp-2 cells.
    Junemann J; Birgin G; Erdmann J; Schröder A; Just I; Gerhard R; Pich A
    Proteomics Clin Appl; 2017 Mar; 11(3-4):. PubMed ID: 27860399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition.
    Chen B; Liu Z; Perry K; Jin R
    Sci Rep; 2022 May; 12(1):9028. PubMed ID: 35637242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clostridium difficile toxins: mechanism of action and role in disease.
    Voth DE; Ballard JD
    Clin Microbiol Rev; 2005 Apr; 18(2):247-63. PubMed ID: 15831824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenic effects of glucosyltransferase from Clostridium difficile toxins.
    Zhang Y; Feng H
    Pathog Dis; 2016 Jun; 74(4):ftw024. PubMed ID: 27044305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucosyltransferase-dependent and -independent effects of TcdB on the proteome of HEp-2 cells.
    Erdmann J; Junemann J; Schröder A; Just I; Gerhard R; Pich A
    Proteomics; 2017 Aug; 17(15-16):. PubMed ID: 28612519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model.
    Guo S; Yan W; McDonough SP; Lin N; Wu KJ; He H; Xiang H; Yang M; Moreira MA; Chang YF
    Vaccine; 2015 Mar; 33(13):1586-95. PubMed ID: 25698490
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Schweitzer T; Genth H; Pich A
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077344
    [No Abstract]   [Full Text] [Related]  

  • 36. [Laboratory-based evaluation of TOX A/B QUIK CHEK "NISSUI" to detect toxins A and B of clostridium difficile].
    Nakasone I; Shiohira CM; Yamane N
    Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi; 2007; 18(2):109-16. PubMed ID: 18154439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding of Clostridium difficile toxins to human milk oligosaccharides.
    El-Hawiet A; Kitova EN; Kitov PI; Eugenio L; Ng KK; Mulvey GL; Dingle TC; Szpacenko A; Armstrong GD; Klassen JS
    Glycobiology; 2011 Sep; 21(9):1217-27. PubMed ID: 21610194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of VIDAS CDAB and CDA immunoassay for the detection of Clostridium difficile in a tcdA- tcdB+ C. difficile prevalent area.
    Shin BM; Lee EJ; Kuak EY; Yoo SJ
    Anaerobe; 2009 Dec; 15(6):266-9. PubMed ID: 19772927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyknotic cell death induced by Clostridium difficile TcdB: chromatin condensation and nuclear blister are induced independently of the glucosyltransferase activity.
    Wohlan K; Goy S; Olling A; Srivaratharajan S; Tatge H; Genth H; Gerhard R
    Cell Microbiol; 2014 Nov; 16(11):1678-92. PubMed ID: 24898616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protection from Clostridium difficile toxin B-catalysed Rac1/Cdc42 glucosylation by tauroursodeoxycholic acid-induced Rac1/Cdc42 phosphorylation.
    Brandes V; Schelle I; Brinkmann S; Schulz F; Schwarz J; Gerhard R; Genth H
    Biol Chem; 2012 Jan; 393(1-2):77-84. PubMed ID: 22628301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.