These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 21890283)
1. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Li M; Zhou M; Adamowicz E; Basarab JA; Guan LL Vet Microbiol; 2012 Feb; 155(1):72-80. PubMed ID: 21890283 [TBL] [Abstract][Full Text] [Related]
2. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Chen Y; Oba M; Guan LL Vet Microbiol; 2012 Oct; 159(3-4):451-9. PubMed ID: 22622335 [TBL] [Abstract][Full Text] [Related]
3. The bovine epimural microbiota displays compositional and structural heterogeneity across different ruminal locations. Sbardellati DL; Fischer A; Cox MS; Li W; Kalscheur KF; Suen G J Dairy Sci; 2020 Apr; 103(4):3636-3647. PubMed ID: 32057427 [TBL] [Abstract][Full Text] [Related]
4. Taxonomic Identification of Ruminal Epithelial Bacterial Diversity during Rumen Development in Goats. Jiao J; Huang J; Zhou C; Tan Z Appl Environ Microbiol; 2015 May; 81(10):3502-9. PubMed ID: 25769827 [TBL] [Abstract][Full Text] [Related]
5. PCR-DGGE analysis of bacterial population attached to the bovine rumen wall. Lukás F; Simůnek J; Mrázek J; Kopecný J Folia Microbiol (Praha); 2010 Jul; 55(4):345-8. PubMed ID: 20680568 [TBL] [Abstract][Full Text] [Related]
6. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Chen Y; Penner GB; Li M; Oba M; Guan LL Appl Environ Microbiol; 2011 Aug; 77(16):5770-81. PubMed ID: 21705529 [TBL] [Abstract][Full Text] [Related]
7. [Use of rpoB and 16S rDNA genes to analyze rumen bacterial diversity of goat using PCR and DGGE]. Shi PJ; Bai YG; Yuan TZ; Yao B; Fan YL Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):285-9. PubMed ID: 17552236 [TBL] [Abstract][Full Text] [Related]
8. Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. Hernandez-Sanabria E; Guan LL; Goonewardene LA; Li M; Mujibi DF; Stothard P; Moore SS; Leon-Quintero MC Appl Environ Microbiol; 2010 Oct; 76(19):6338-50. PubMed ID: 20709849 [TBL] [Abstract][Full Text] [Related]
9. Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. Bekele AZ; Koike S; Kobayashi Y FEMS Microbiol Lett; 2011 Mar; 316(1):51-60. PubMed ID: 21204927 [TBL] [Abstract][Full Text] [Related]
10. Dominant bacterial communities in the rumen of Gayals (Bos frontalis), Yaks (Bos grunniens) and Yunnan Yellow Cattle (Bos taurs) revealed by denaturing gradient gel electrophoresis. Leng J; Xie L; Zhu R; Yang S; Gou X; Li S; Mao H Mol Biol Rep; 2011 Nov; 38(8):4863-72. PubMed ID: 21140219 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. Bento CB; de Azevedo AC; Detmann E; Mantovani HC BMC Microbiol; 2015 Feb; 15():28. PubMed ID: 25888186 [TBL] [Abstract][Full Text] [Related]
12. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Petri RM; Schwaiger T; Penner GB; Beauchemin KA; Forster RJ; McKinnon JJ; McAllister TA Appl Environ Microbiol; 2013 Jun; 79(12):3744-55. PubMed ID: 23584771 [TBL] [Abstract][Full Text] [Related]
13. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. Wetzels SU; Mann E; Pourazad P; Qumar M; Pinior B; Metzler-Zebeli BU; Wagner M; Schmitz-Esser S; Zebeli Q J Dairy Sci; 2017 Mar; 100(3):1829-1844. PubMed ID: 28041738 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal shifts in bacterial diversity and fermentation pattern in the rumen of steers grazing wheat pasture. Pitta DW; Pinchak WE; Dowd S; Dorton K; Yoon I; Min BR; Fulford JD; Wickersham TA; Malinowski DP Anaerobe; 2014 Dec; 30():11-7. PubMed ID: 25086244 [TBL] [Abstract][Full Text] [Related]
16. Design and in vitro evaluation of new rpoB-DGGE primers for ruminants. Perumbakkam S; Craig AM FEMS Microbiol Ecol; 2011 Apr; 76(1):156-69. PubMed ID: 21223335 [TBL] [Abstract][Full Text] [Related]
17. Identification of metabolically active proteobacterial and archaeal communities in the rumen by DNA- and RNA-derived 16S rRNA gene. Kang SH; Evans P; Morrison M; McSweeney C J Appl Microbiol; 2013 Sep; 115(3):644-53. PubMed ID: 23742097 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers. Myer PR; Kim M; Freetly HC; Smith TPL J Microbiol Methods; 2016 Aug; 127():132-140. PubMed ID: 27282101 [TBL] [Abstract][Full Text] [Related]
19. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. Jeyanathan J; Kirs M; Ronimus RS; Hoskin SO; Janssen PH FEMS Microbiol Ecol; 2011 May; 76(2):311-26. PubMed ID: 21255054 [TBL] [Abstract][Full Text] [Related]
20. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Liu JH; Zhang ML; Zhang RY; Zhu WY; Mao SY Microb Biotechnol; 2016 Mar; 9(2):257-68. PubMed ID: 26833450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]