BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21890369)

  • 1. Proton beam simulation with MCNPX/CINDER'90: Germanium metal activation estimates below 30MeV relevant to the bulk production of arsenic radioisotopes.
    Fassbender M; Taylor W; Vieira D; Nortier M; Bach H; John K
    Appl Radiat Isot; 2012 Jan; 70(1):72-5. PubMed ID: 21890369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-section measurements and nuclear model calculation for proton induced nuclear reaction on zirconium.
    Al-Abyad M; Abdel-Hamid AS; Tárkányi F; Ditrói F; Takács S; Seddik U; Bashter II
    Appl Radiat Isot; 2012 Jan; 70(1):257-62. PubMed ID: 21865049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc.
    Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A
    Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets.
    Chattopadhyay S; Pal S; Vimalnath KV; Das MK
    Appl Radiat Isot; 2007 Nov; 65(11):1202-7. PubMed ID: 17656098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for radiochemical separation of arsenic from irradiated germanium oxide.
    Jennewein M; Qaim SM; Hermanne A; Jahn M; Tsyganov E; Slavine N; Seliounine S; Antich PA; Kulkarni PV; Thorpe PE; Mason RP; Rösch F
    Appl Radiat Isot; 2005 Sep; 63(3):343-51. PubMed ID: 15955705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of natural Hf and Ta in relation to the production of 177Lu.
    Medvedev DG; Mausner LF; Greene GA; Hanson AL
    Appl Radiat Isot; 2008 Oct; 66(10):1300-6. PubMed ID: 18456503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation functions of natGe(p,xn)71,72,73,74 As reactions up to 100 MeV with a focus on the production of 72 As for medical and 73 As for environmental studies.
    Spahn I; Steyn GF; Nortier FM; Coenen HH; Qaim SM
    Appl Radiat Isot; 2007 Sep; 65(9):1057-64. PubMed ID: 17574855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation functions of (p,x) reactions on natural nickel between proton energies of 2.7 and 27.5 MeV.
    Al Saleh FS; Al Mugren KS; Azzam A
    Appl Radiat Isot; 2007 Jan; 65(1):104-13. PubMed ID: 17015019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic estimates of secondary neutron dose in proton therapy.
    Anferov V
    Phys Med Biol; 2010 Dec; 55(24):7509-22. PubMed ID: 21098918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial distributions of residuals produced inside a spallation target.
    Pohorecki W; Horwacik T; Janczyszyn J; Taczanowski S; Bamblevski VP; Gustov SA; Mirokhin IV; Molokanov AG; Polanski A
    Radiat Prot Dosimetry; 2005; 115(1-4):630-3. PubMed ID: 16381796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation cross-sections of proton induced nuclear reactions on thulium in the 20-45 MeV energy range.
    Tárkányi F; Hermanne A; Takács S; Ditrói F; Spahn I; Ignatyuk AV
    Appl Radiat Isot; 2012 Jan; 70(1):309-14. PubMed ID: 21920768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Yield Production and Radiochemical Isolation of Isotopically Pure Arsenic-72 and Novel Radioarsenic Labeling Strategies for the Development of Theranostic Radiopharmaceuticals.
    Ellison PA; Barnhart TE; Chen F; Hong H; Zhang Y; Theuer CP; Cai W; Nickles RJ; DeJesus OT
    Bioconjug Chem; 2016 Jan; 27(1):179-88. PubMed ID: 26646989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary shielding assessment for the 100 MeV proton linac (KOMAC).
    Lee YO; Cho YS; Chang J
    Radiat Prot Dosimetry; 2005; 115(1-4):569-72. PubMed ID: 16381787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of 94mTc production for positron emission tomography studies using the Monte Carlo code MCNPX-2.6.
    Sadeghi M; Hashemi N; Afarideh H; Tenreiro C
    Appl Radiat Isot; 2013 Dec; 82():347-50. PubMed ID: 24161593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis.
    Oden CP; Schweitzer JS; McDowell GM
    Appl Radiat Isot; 2006 Sep; 64(9):1074-81. PubMed ID: 16737819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation functions of proton-induced reactions in (nat)Cu in the energy range 7-17 MeV.
    Siiskonen T; Huikari J; Haavisto T; Bergman J; Heselius SJ; Lill JO; Lönnroth T; Peräjärvi K
    Appl Radiat Isot; 2009 Nov; 67(11):2037-9. PubMed ID: 19110436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of energy deposition, photon and neutron production in proton therapy of thyroid gland using MCNPX.
    Mowlavi AA; Fornasie MR; de Denaro M
    Appl Radiat Isot; 2011 Jan; 69(1):122-5. PubMed ID: 20817539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-differential heavy-ion production cross sections.
    Miller TM; Townsend LW
    Radiat Prot Dosimetry; 2004; 110(1-4):53-6. PubMed ID: 15353621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y.
    Pal S; Chattopadhyay S; Das MK; Sudersanan M
    Appl Radiat Isot; 2006 Dec; 64(12):1521-7. PubMed ID: 16822676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.