These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2189042)

  • 1. Theoretical analysis of the effect of convective flow on solute transport and insulin release in a hollow fiber bioartificial pancreas.
    Pillarella MR; Zydney AL
    J Biomech Eng; 1990 May; 112(2):220-8. PubMed ID: 2189042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of beta cell distribution on the performance of a bioartificial pancreas.
    Pillarella MR; Zydney AL
    ASAIO Trans; 1990; 36(3):M715-9. PubMed ID: 2252792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioartificial kidney. I. Theoretical analysis of convective flow in hollow fiber modules: application to a bioartificial hemofilter.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):142-52. PubMed ID: 10712730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel model of solute transport in a hollow-fiber bioartificial pancreas based on a finite element method.
    Dulong JL; Legallais C; Darquy S; Reach G
    Biotechnol Bioeng; 2002 Jun; 78(5):576-82. PubMed ID: 12115127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioartificial kidney. II. A convective flow model of a hollow fiber bioartificial renal tubule.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):153-9. PubMed ID: 10712731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solute washout experiments for characterizing mass transport in hollow fiber immunoisolation membranes.
    Boyd RF; López M; Stephens CL; Vélez GM; Ramírez CA; Zydney AL
    Ann Biomed Eng; 1998; 26(4):618-26. PubMed ID: 9662154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of a novel spiral wound membrane sandwich design for an implantable bioartificial pancreas.
    Sarver JG; Fournier RL
    Comput Biol Med; 1990; 20(2):105-19. PubMed ID: 2114252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the mass transfer rate using computer simulation in a three-dimensional interwoven hollow fiber-type bioartificial liver.
    Sakiyama R; Hamada H; Blau B; Freyer N; Zeilinger K; Schubert F; Miki T
    Biotechnol Lett; 2018 Dec; 40(11-12):1567-1578. PubMed ID: 30264297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convective flow through a hollow fiber bioartificial liver.
    Moussy Y
    Artif Organs; 2003 Nov; 27(11):1041-9. PubMed ID: 14616523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic modelling as a tool for the design of a vascular bioartificial pancreas: feedback between modelling and experimental validation.
    Reach G; Jaffrin MY
    Comput Methods Programs Biomed; 1990; 32(3-4):277-85. PubMed ID: 2249427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen consumption in a hollow fiber bioartificial liver--revisited.
    Patzer JF
    Artif Organs; 2004 Jan; 28(1):83-98. PubMed ID: 14720293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Islet encapsulated implantable composite hollow fiber membrane based device: A bioartificial pancreas.
    Teotia RS; Kadam S; Singh AK; Verma SK; Bahulekar A; Kanetkar S; Bellare J
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():857-866. PubMed ID: 28532102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling oxygen transport in a cylindrical bioartificial pancreas.
    Thrash M
    ASAIO J; 2010; 56(4):338-43. PubMed ID: 20559130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A U-shaped bioartificial pancreas with rapid glucose-insulin kinetics. In vitro evaluation and kinetic modelling.
    Reach G; Jaffrin MY; Desjeux JF
    Diabetes; 1984 Aug; 33(8):752-61. PubMed ID: 6430737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of oxygen transport limitations in hollow fiber bioreactors.
    Piret JM; Cooney CL
    Biotechnol Bioeng; 1991 Jan; 37(1):80-92. PubMed ID: 18597310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen transfer in a convection-enhanced hollow fiber bioartificial liver.
    Hay PD; Veitch AR; Gaylor JD
    Artif Organs; 2001 Feb; 25(2):119-30. PubMed ID: 11251477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.
    Chen G; Palmer AF
    Biotechnol Bioeng; 2009 Apr; 102(6):1603-12. PubMed ID: 19072844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of insulin secretion from MIN6 pseudoislets after encapsulation in a prototype device of a bioartificial pancreas.
    Barrientos R; Baltrusch S; Sigrist S; Legeay G; Belcourt A; Lenzen S
    Horm Metab Res; 2009 Jan; 41(1):5-9. PubMed ID: 18855306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of oxygen transfer including cell necrosis for the design of a bioartificial pancreas.
    Dulong JL; Legallais C
    Biotechnol Bioeng; 2007 Apr; 96(5):990-8. PubMed ID: 16897784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intravascular bioartificial pancreas device (iBAP) with silicon nanopore membranes (SNM) for islet encapsulation under convective mass transport.
    Song S; Blaha C; Moses W; Park J; Wright N; Groszek J; Fissell W; Vartanian S; Posselt AM; Roy S
    Lab Chip; 2017 May; 17(10):1778-1792. PubMed ID: 28426078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.