BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 21890478)

  • 1. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.
    Osada N; Akashi H
    Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive selection of mitochondrial complex I subunits during primate radiation.
    Mishmar D; Ruiz-Pesini E; Mondragon-Palomino M; Procaccio V; Gaut B; Wallace DC
    Gene; 2006 Aug; 378():11-8. PubMed ID: 16828987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase.
    Schmidt TR; Wu W; Goodman M; Grossman LI
    Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod.
    Willett CS; Burton RS
    Mol Biol Evol; 2004 Mar; 21(3):443-53. PubMed ID: 14660687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i.
    Gershoni M; Fuchs A; Shani N; Fridman Y; Corral-Debrinski M; Aharoni A; Frishman D; Mishmar D
    J Mol Biol; 2010 Nov; 404(1):158-71. PubMed ID: 20868692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of aerobic energy metabolism in primates.
    Grossman LI; Schmidt TR; Wildman DE; Goodman M
    Mol Phylogenet Evol; 2001 Jan; 18(1):26-36. PubMed ID: 11161739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of mitochondrial-encoded cytochrome oxidase subunits in endothermic fish: the importance of taxon-sampling in codon-based models.
    Little AG; Lougheed SC; Moyes CD
    Mol Phylogenet Evol; 2012 Jun; 63(3):679-84. PubMed ID: 22405814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Adaptive evolution of the Homo mitochondrial genome].
    Maliarchuk BA
    Mol Biol (Mosk); 2011; 45(5):845-50. PubMed ID: 22393781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-protein interfaces from cytochrome c oxidase I evolve faster than nonbinding surfaces, yet negative selection is the driving force.
    Aledo JC; Valverde H; Ruíz-Camacho M; Morilla I; López FD
    Genome Biol Evol; 2014 Oct; 6(11):3064-76. PubMed ID: 25359921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Search for genes positively selected during primate evolution by 5'-end-sequence screening of cynomolgus monkey cDNAs.
    Osada N; Kusuda J; Hirata M; Tanuma R; Hida M; Sugano S; Hirai M; Hashimoto K
    Genomics; 2002 May; 79(5):657-62. PubMed ID: 11991714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rates of molecular evolution in rodent and primate mitochondrial DNA.
    Weinreich DM
    J Mol Evol; 2001 Jan; 52(1):40-50. PubMed ID: 11139293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates.
    Wu W; Goodman M; Lomax MI; Grossman LI
    J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes.
    Popadin KY; Nikolaev SI; Junier T; Baranova M; Antonarakis SE
    Mol Biol Evol; 2013 Feb; 30(2):347-55. PubMed ID: 22983951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities?
    Burton RS; Barreto FS
    Mol Ecol; 2012 Oct; 21(20):4942-57. PubMed ID: 22994153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the nuclear-encoded cytochrome oxidase subunits in vertebrates.
    Little AG; Kocha KM; Lougheed SC; Moyes CD
    Physiol Genomics; 2010 Jun; 42(1):76-84. PubMed ID: 20233836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longevity and the evolution of the mitochondrial DNA-coded proteins in mammals.
    Rottenberg H
    Mech Ageing Dev; 2006 Sep; 127(9):748-60. PubMed ID: 16876233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA.
    Rand DM; Kann LM
    Genetica; 1998; 102-103(1-6):393-407. PubMed ID: 9720291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan.
    Bayona-Bafaluy MP; Müller S; Moraes CT
    Mol Biol Evol; 2005 Mar; 22(3):716-24. PubMed ID: 15574809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that two reports of mtDNA cytochrome c oxidase "mutations" in Alzheimer's disease are based on nDNA pseudogenes of recent evolutionary origin.
    Davis JN; Parker WD
    Biochem Biophys Res Commun; 1998 Mar; 244(3):877-83. PubMed ID: 9535760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.