These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 21890498)

  • 21. Modulation of the Acetylcholine Receptor Clustering Pathway Improves Neuromuscular Junction Structure and Muscle Strength in a Mouse Model of Congenital Myasthenic Syndrome.
    Spendiff S; Howarth R; McMacken G; Davey T; Quinlan K; O'Connor E; Slater C; Hettwer S; Mäder A; Roos A; Horvath R; Lochmüller H
    Front Mol Neurosci; 2020; 13():594220. PubMed ID: 33390901
    [No Abstract]   [Full Text] [Related]  

  • 22. [Pathophysiological characterization of congenital myasthenic syndromes: the example of mutations in the MUSK gene].
    Chevessier F; Faraut B; Ravel-Chapuis A; Richard P; Gaudon K; Bauché S; Prioleau C; Herbst R; Goillot E; Ioos C; Azulay JP; Attarian S; Leroy JP; Fournier E; Legay C; Schaeffer L; Koenig J; Fardeau M; Eymard B; Pouget J; Hantaï D
    J Soc Biol; 2005; 199(1):61-77. PubMed ID: 16114265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Null variants in AGRN cause lethal fetal akinesia deformation sequence.
    Geremek M; Dudarewicz L; Obersztyn E; Paczkowska M; Smyk M; Sobecka K; Nowakowska B
    Clin Genet; 2020 Apr; 97(4):634-638. PubMed ID: 31730230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel LG1 Mutations in Agrin Causing Congenital Myasthenia Syndrome.
    Xia P; Xie F; Zhou ZJ; Lv W
    Intern Med; 2022 Mar; 61(6):887-890. PubMed ID: 34433720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. APC2
    Chen A; Bai L; Zhong K; Shu X; Wang A; Xiao Y; Zhang K; Shen C
    FASEB J; 2020 Sep; 34(9):12009-12023. PubMed ID: 32687671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogenic effects of agrin V1727F mutation are isoform specific and decrease its expression and affinity for HSPGs and LRP4.
    Rudell JB; Maselli RA; Yarov-Yarovoy V; Ferns MJ
    Hum Mol Genet; 2019 Aug; 28(16):2648-2658. PubMed ID: 30994901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome.
    McMacken GM; Spendiff S; Whittaker RG; O'Connor E; Howarth RM; Boczonadi V; Horvath R; Slater CR; Lochmüller H
    Hum Mol Genet; 2019 Jul; 28(14):2339-2351. PubMed ID: 31220253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of disease and therapeutic rescue of Dok7 congenital myasthenia.
    Oury J; Zhang W; Leloup N; Koide A; Corrado AD; Ketavarapu G; Hattori T; Koide S; Burden SJ
    Nature; 2021 Jul; 595(7867):404-408. PubMed ID: 34163073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and slow-twitching muscles are differentially affected by reduced cholinergic transmission in mice deficient for VAChT: A mouse model for congenital myasthenia.
    Magalhães-Gomes MPS; Motta-Santos D; Schetino LPL; Andrade JN; Bastos CP; Guimarães DAS; Vaughan SK; Martinelli PM; Guatimosim S; Pereira GS; Coimbra CC; Prado VF; Prado MAM; Valdez G; Guatimosim C
    Neurochem Int; 2018 Nov; 120():1-12. PubMed ID: 30003945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuromuscular junction immaturity and muscle atrophy are hallmarks of the ColQ-deficient mouse, a model of congenital myasthenic syndrome with acetylcholinesterase deficiency.
    Sigoillot SM; Bourgeois F; Karmouch J; Molgó J; Dobbertin A; Chevalier C; Houlgatte R; Léger J; Legay C
    FASEB J; 2016 Jun; 30(6):2382-99. PubMed ID: 26993635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice.
    Lin S; Maj M; Bezakova G; Magyar JP; Brenner HR; Ruegg MA
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11406-11. PubMed ID: 18685098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New mutation in the β1 propeller domain of LRP4 responsible for congenital myasthenic syndrome associated with Cenani-Lenz syndrome.
    Masingue M; Cattaneo O; Wolff N; Buon C; Sternberg D; Euchparmakian M; Boex M; Behin A; Mamchaouhi K; Maisonobe T; Nougues MC; Isapof A; Fontaine B; Messéant J; Eymard B; Strochlic L; Bauché S
    Sci Rep; 2023 Aug; 13(1):14054. PubMed ID: 37640745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel AGRN Mutation Leads to Congenital Myasthenic Syndrome Only Affecting Limb-girdle Muscle.
    Zhang Y; Dai Y; Han JN; Chen ZH; Ling L; Pu CQ; Cui LY; Huang XS
    Chin Med J (Engl); 2017 Oct; 130(19):2279-2282. PubMed ID: 28937031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Molecular mechanisms underlying the formation of neuromuscular junction].
    Higuchi O; Yamanashi Y
    Brain Nerve; 2011 Jul; 63(7):649-55. PubMed ID: 21747134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to Spot Congenital Myasthenic Syndromes Resembling the Lambert-Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features.
    Lorenzoni PJ; Scola RH; Kay CSK; Werneck LC; Horvath R; Lochmüller H
    Neuromolecular Med; 2018 Jun; 20(2):205-214. PubMed ID: 29696584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.
    Samuel MA; Valdez G; Tapia JC; Lichtman JW; Sanes JR
    PLoS One; 2012; 7(10):e46663. PubMed ID: 23056392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inherited disorders of the neuromuscular junction: an update.
    Rodríguez Cruz PM; Palace J; Beeson D
    J Neurol; 2014 Nov; 261(11):2234-43. PubMed ID: 25305004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current status of the congenital myasthenic syndromes.
    Engel AG
    Neuromuscul Disord; 2012 Feb; 22(2):99-111. PubMed ID: 22104196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations in GFPT1-related congenital myasthenic syndromes are associated with synaptic morphological defects and underlie a tubular aggregate myopathy with synaptopathy.
    Bauché S; Vellieux G; Sternberg D; Fontenille MJ; De Bruyckere E; Davoine CS; Brochier G; Messéant J; Wolf L; Fardeau M; Lacène E; Romero N; Koenig J; Fournier E; Hantaï D; Streichenberger N; Manel V; Lacour A; Nadaj-Pakleza A; Sukno S; Bouhour F; Laforêt P; Fontaine B; Strochlic L; Eymard B; Chevessier F; Stojkovic T; Nicole S
    J Neurol; 2017 Aug; 264(8):1791-1803. PubMed ID: 28712002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors.
    Camilleri AA; Willmann R; Sadasivam G; Lin S; Rüegg MA; Gesemann M; Fuhrer C
    BMC Neurosci; 2007 Jul; 8():46. PubMed ID: 17605785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.