These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21890630)

  • 1. Allosteric communication in cysteinyl tRNA synthetase: a network of direct and indirect readout.
    Ghosh A; Sakaguchi R; Liu C; Vishveshwara S; Hou YM
    J Biol Chem; 2011 Oct; 286(43):37721-31. PubMed ID: 21890630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative design of a tRNA core for aminoacylation.
    Christian T; Lipman RS; Evilia C; Hou YM
    J Mol Biol; 2000 Nov; 303(4):503-14. PubMed ID: 11054287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic quality control of anticodon recognition by a eukaryotic aminoacyl-tRNA synthetase.
    Liu C; Gamper H; Shtivelband S; Hauenstein S; Perona JJ; Hou YM
    J Mol Biol; 2007 Apr; 367(4):1063-78. PubMed ID: 17303165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA
    Vargas-Rodriguez O; Englert M; Merkuryev A; Mukai T; Söll D
    RNA Biol; 2018; 15(4-5):471-479. PubMed ID: 29879865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase.
    Komatsoulis GA; Abelson J
    Biochemistry; 1993 Jul; 32(29):7435-44. PubMed ID: 8338841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An important 2'-OH group for an RNA-protein interaction.
    Hou YM; Zhang X; Holland JA; Davis DR
    Nucleic Acids Res; 2001 Feb; 29(4):976-85. PubMed ID: 11160931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis.
    Burke B; An S; Musier-Forsyth K
    Biochim Biophys Acta; 2008 Sep; 1784(9):1222-5. PubMed ID: 18513497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.
    Liu C; Sanders JM; Pascal JM; Hou YM
    RNA; 2012 Feb; 18(2):213-21. PubMed ID: 22184460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of mis-aminoacylation of a dual-specificity aminoacyl-tRNA synthetase.
    Lipman RS; Wang J; Sowers KR; Hou YM
    J Mol Biol; 2002 Feb; 315(5):943-9. PubMed ID: 11827467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.
    Rould MA; Perona JJ; Steitz TA
    Nature; 1991 Jul; 352(6332):213-8. PubMed ID: 1857417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase.
    Budiman ME; Knaggs MH; Fetrow JS; Alexander RW
    Proteins; 2007 Aug; 68(3):670-89. PubMed ID: 17510965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Adachi T; Inokuchi H; Söll D
    Biochimie; 1993; 75(12):1083-90. PubMed ID: 8199243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo.
    Pallanck L; Li S; Schulman LH
    J Biol Chem; 1992 Apr; 267(11):7221-3. PubMed ID: 1373131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceptor stem and anticodon RNA hairpin helix interactions with glutamine tRNA synthetase.
    Wright DJ; Martinis SA; Jahn M; Söll D; Schimmel P
    Biochimie; 1993; 75(12):1041-9. PubMed ID: 8199240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNA(Cys) synthesis.
    Chen M; Nakazawa Y; Kubo Y; Asano N; Kato K; Tanaka I; Yao M
    Acta Crystallogr F Struct Biol Commun; 2016 Jul; 72(Pt 7):569-72. PubMed ID: 27380375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon.
    Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D
    J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.