BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21890701)

  • 1. Adjusting the spokes of the flagellar motor with the DNA-binding protein H-NS.
    Paul K; Carlquist WC; Blair DF
    J Bacteriol; 2011 Nov; 193(21):5914-22. PubMed ID: 21890701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced binding of altered H-NS protein to flagellar rotor protein FliG causes increased flagellar rotational speed and hypermotility in Escherichia coli.
    Donato GM; Kawula TH
    J Biol Chem; 1998 Sep; 273(37):24030-6. PubMed ID: 9727020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli.
    Paul K; Brunstetter D; Titen S; Blair DF
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17171-6. PubMed ID: 21969567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking.
    Lowder BJ; Duyvesteyn MD; Blair DF
    J Bacteriol; 2005 Aug; 187(16):5640-7. PubMed ID: 16077109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.
    Lloyd SA; Whitby FG; Blair DF; Hill CP
    Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of the Histone-Like Protein H-NS in Motility of Escherichia coli: Multiple Regulatory Roles Rather than Direct Action at the Flagellar Motor.
    Kim EA; Blair DF
    J Bacteriol; 2015 Oct; 197(19):3110-20. PubMed ID: 26195595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex.
    Brown PN; Terrazas M; Paul K; Blair DF
    J Bacteriol; 2007 Jan; 189(2):305-12. PubMed ID: 17085573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli.
    Yakushi T; Yang J; Fukuoka H; Homma M; Blair DF
    J Bacteriol; 2006 Feb; 188(4):1466-72. PubMed ID: 16452430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chimeric N-terminal Escherichia coli--C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E. coli flagellar rotation and chemotaxis.
    Morehouse KA; Goodfellow IG; Sockett RE
    J Bacteriol; 2005 Mar; 187(5):1695-701. PubMed ID: 15716440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor.
    Terashima H; Kojima S; Homma M
    J Bacteriol; 2021 May; 203(9):. PubMed ID: 33619152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli.
    Ko M; Park C
    J Mol Biol; 2000 Oct; 303(3):371-82. PubMed ID: 11031114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flagellar brake protein YcgR interacts with motor proteins MotA and FliG to regulate the flagellar rotation speed and direction.
    Han Q; Wang SF; Qian XX; Guo L; Shi YF; He R; Yuan JH; Hou YJ; Li DF
    Front Microbiol; 2023; 14():1159974. PubMed ID: 37125196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli.
    Gosink KK; Häse CC
    J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor.
    Baker MA; Hynson RM; Ganuelas LA; Mohammadi NS; Liew CW; Rey AA; Duff AP; Whitten AE; Jeffries CM; Delalez NJ; Morimoto YV; Stock D; Armitage JP; Turberfield AJ; Namba K; Berry RM; Lee LK
    Nat Struct Mol Biol; 2016 Mar; 23(3):197-203. PubMed ID: 26854663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility.
    Fang X; Gomelsky M
    Mol Microbiol; 2010 Jun; 76(5):1295-305. PubMed ID: 20444091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor.
    Garza AG; Biran R; Wohlschlegel JA; Manson MD
    J Mol Biol; 1996 May; 258(2):270-85. PubMed ID: 8627625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motility protein complexes in the bacterial flagellar motor.
    Tang H; Braun TF; Blair DF
    J Mol Biol; 1996 Aug; 261(2):209-21. PubMed ID: 8757288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis of the Flagellar Switch Complex in Escherichia coli: Formation of Sub-Complexes Independently of the Basal-Body MS-Ring.
    Kim EA; Panushka J; Meyer T; Ide N; Carlisle R; Baker S; Blair DF
    J Mol Biol; 2017 Jul; 429(15):2353-2359. PubMed ID: 28625846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motility protein interactions in the bacterial flagellar motor.
    Garza AG; Harris-Haller LW; Stoebner RA; Manson MD
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1970-4. PubMed ID: 7892209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+-driven flagellar motor.
    Gohara M; Kobayashi S; Abe-Yoshizumi R; Nonoyama N; Kojima S; Asami Y; Homma M
    J Biochem; 2014 Feb; 155(2):83-9. PubMed ID: 24174548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.