BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21890703)

  • 41. The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study.
    Soule T; Gao Q; Stout V; Garcia-Pichel F
    Photochem Photobiol; 2013; 89(2):415-23. PubMed ID: 23136876
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.
    Janssen J; Soule T
    FEMS Microbiol Lett; 2016 Jan; 363(2):fnv235. PubMed ID: 26656542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme.
    Hudek L; Pearson LA; Michalczyk A; Neilan BA; Ackland ML
    FEMS Microbiol Ecol; 2013 Nov; 86(2):149-71. PubMed ID: 23710564
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15.
    Yoshida T; Sakamoto T
    J Gen Appl Microbiol; 2009 Apr; 55(2):135-45. PubMed ID: 19436130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics.
    Ow SY; Noirel J; Cardona T; Taton A; Lindblad P; Stensjö K; Wright PC
    J Proteome Res; 2009 Jan; 8(1):187-98. PubMed ID: 19012430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Putative O-Linked β-
    Khayatan B; Bains DK; Cheng MH; Cho YW; Huynh J; Kim R; Omoruyi OH; Pantoja AP; Park JS; Peng JK; Splitt SD; Tian MY; Risser DD
    J Bacteriol; 2017 May; 199(9):. PubMed ID: 28242721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543.
    Shishido TK; Jokela J; Fewer DP; Wahlsten M; Fiore MF; Sivonen K
    ACS Chem Biol; 2017 Nov; 12(11):2746-2755. PubMed ID: 28933529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.
    Makino T; Harada H; Ikenaga H; Matsuda S; Takaichi S; Shindo K; Sandmann G; Ogata T; Misawa N
    Plant Cell Physiol; 2008 Dec; 49(12):1867-78. PubMed ID: 18987067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme.
    Ogura R; Wakamatsu T; Mutaguchi Y; Doi K; Ohshima T
    Enzyme Microb Technol; 2014 Jun; 60():40-6. PubMed ID: 24835098
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments.
    Sandh G; Ramström M; Stensjö K
    BMC Genomics; 2014 Dec; 15(1):1064. PubMed ID: 25476978
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133.
    Holmqvist M; Stensjö K; Oliveira P; Lindberg P; Lindblad P
    BMC Microbiol; 2009 Mar; 9():54. PubMed ID: 19284581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.
    Gupta D; Ip T; Summers ML; Basu C
    Bioengineered; 2015; 6(1):33-41. PubMed ID: 25424521
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay.
    Matsui D; Okazaki S; Matsuda M; Asano Y
    J Biotechnol; 2015 Feb; 196-197():27-32. PubMed ID: 25615944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.
    Moirangthem LD; Bhattacharya S; Stensjö K; Lindblad P; Bhattacharya J
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3809-18. PubMed ID: 24384747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resolving Confusion Surrounding d-Ala-d-Ala Ligase Catalysis in Cyanobacterial Mycosporine-Like Amino Acid (MAA) Biosynthesis.
    Dextro RB; Fiore MF; Long PF
    Chembiochem; 2023 May; 24(10):e202300158. PubMed ID: 37104846
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation.
    Arias DB; Gomez Pinto KA; Cooper KK; Summers ML
    Microb Genom; 2020 Oct; 6(10):. PubMed ID: 32941127
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a model system for the study of Nostoc punctiforme akinetes.
    Argueta C; Summers ML
    Arch Microbiol; 2005 Aug; 183(5):338-46. PubMed ID: 15905999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Homologous overexpression of NpDps2 and NpDps5 increases the tolerance for oxidative stress in the multicellular cyanobacterium Nostoc punctiforme.
    Li X; Mustila H; Magnuson A; Stensjö K
    FEMS Microbiol Lett; 2018 Sep; 365(18):. PubMed ID: 30107525
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine.
    Singh G; Babele PK; Kumar A; Srivastava A; Sinha RP; Tyagi MB
    J Photochem Photobiol B; 2014 Sep; 138():55-62. PubMed ID: 24911272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic and lipidomic analyses suggest that
    Belton S; Lamari N; Jermiin LS; Mariscal V; Flores E; McCabe PF; Ng CKY
    Access Microbiol; 2022; 4(1):000306. PubMed ID: 35252750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.