These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21890900)

  • 1. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain.
    Buck J; Wacker A; Warkentin E; Wöhnert J; Wirmer-Bartoschek J; Schwalbe H
    Nucleic Acids Res; 2011 Dec; 39(22):9768-78. PubMed ID: 21890900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site.
    Hanke CA; Gohlke H
    J Chem Inf Model; 2017 Nov; 57(11):2822-2832. PubMed ID: 29019403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch.
    Hanke CA; Gohlke H
    PLoS One; 2017; 12(6):e0179271. PubMed ID: 28640851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule analysis reveals multi-state folding of a guanine riboswitch.
    Chandra V; Hannan Z; Xu H; Mandal M
    Nat Chem Biol; 2017 Feb; 13(2):194-201. PubMed ID: 27941758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium Ion-Driven Folding and Conformational Switching Kinetics of Tetracycline Binding Aptamer: Implications for in vivo Riboswitch Engineering.
    Kaiser C; Vogel M; Appel B; Weigand J; Müller S; Suess B; Wachtveitl J
    J Mol Biol; 2023 Oct; 435(20):168253. PubMed ID: 37640152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
    Wacker A; Buck J; Mathieu D; Richter C; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2011 Aug; 39(15):6802-12. PubMed ID: 21576236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force field dependence of riboswitch dynamics.
    Hanke CA; Gohlke H
    Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection.
    Vicens Q; Mondragón E; Batey RT
    Nucleic Acids Res; 2011 Oct; 39(19):8586-98. PubMed ID: 21745821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism.
    Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS
    RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine.
    Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK
    Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding.
    Chen H; Egger M; Xu X; Flemmich L; Krasheninina O; Sun A; Micura R; Ren A
    Nucleic Acids Res; 2020 Dec; 48(21):12394-12406. PubMed ID: 33170270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.
    Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX
    Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy.
    Chen B; Zuo X; Wang YX; Dayie TK
    Nucleic Acids Res; 2012 Apr; 40(7):3117-30. PubMed ID: 22139931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch.
    Villa A; Wöhnert J; Stock G
    Nucleic Acids Res; 2009 Aug; 37(14):4774-86. PubMed ID: 19515936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.