These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21892991)

  • 1. An examination of kernite (Na2B4O6(OH)2·3H2O) using X-ray and electron spectroscopies: quantitative microanalysis of a hydrated low-Z mineral.
    Meier DC; Davis JM; Vicenzi EP
    Microsc Microanal; 2011 Oct; 17(5):718-27. PubMed ID: 21892991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron probe microanalysis of biological soft tissues: principle and technique.
    Lechene C
    Fed Proc; 1980 Sep; 39(11):2871-80. PubMed ID: 7409208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Structure of Kernite, Na2B4O6(OH)2 {middle dot} 3H2.
    Giese RF
    Science; 1966 Dec; 154(3755):1453-4. PubMed ID: 17821565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance and limitations of electron probe microanalysis applied to the characterization of coatings and layered structures.
    Willich P; Bethke R
    Anal Bioanal Chem; 1995 Oct; 353(3-4):389-92. PubMed ID: 15048505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standards for X-ray microanalysis of calcified structures.
    Lopez-Escamez JA; Campos A
    Scanning Microsc Suppl; 1994; 8():171-85. PubMed ID: 7638486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray microanalysis of freeze-dried and frozen-hydrated cryosections.
    Zierold K
    J Electron Microsc Tech; 1988 May; 9(1):65-82. PubMed ID: 3199231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An expert system for chemical speciation of individual particles using low-Z particle electron probe X-ray microanalysis data.
    Ro CU; Kim H; Van Grieken R
    Anal Chem; 2004 Mar; 76(5):1322-7. PubMed ID: 14987088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-related problems associated with X-ray microanalysis in the variable pressure scanning electron microscope at low pressures.
    Griffin BJ; Suvorova AA
    Microsc Microanal; 2003 Apr; 9(2):155-65. PubMed ID: 12639242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques.
    Jung HJ; Malek MA; Ryu J; Kim B; Song YC; Kim H; Ro CU
    Anal Chem; 2010 Jul; 82(14):6193-202. PubMed ID: 20568714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verification of Layered Structures in SnO2/Metal-based Gas Sensors by X-ray Microanalysis: Comparison with X-ray Photoelectron Spectroscopy.
    Bemporad E; Carassiti F; Kaciulis S; Mattogno G
    Microsc Microanal; 2001 Nov; 7(6):518-525. PubMed ID: 12597796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic core level microanalyses and microcopies in multipurpose apparatus.
    Cazaux J; Gramari D; Jbara O; Mouze D; Nassiopoulos A; Thomas X
    J Electron Microsc Tech; 1989 Mar; 11(3):222-9. PubMed ID: 2723803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray microanalysis of frozen-hydrated specimens.
    Zierold K
    Scan Electron Microsc; 1983; (Pt 2):809-26. PubMed ID: 6635577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficiency of X-ray microanalysis in low-vacuum scanning electron microscope: deposition of calcium on the surface of implanted hydrogel intraocular lens (IOL).
    Sato S; Matsui H; Sasaki Y; Oharazawa H; Nishimura M; Adachi A; Nakazawa E; Takahashi H
    J Submicrosc Cytol Pathol; 2006 Apr; 38(1):1-4. PubMed ID: 17283961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge distribution in the light-atom mineral kernite.
    Coppens P; Cooper WF; Larsen FK
    Science; 1972 Apr; 176(4031):165-6. PubMed ID: 17843534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray microanalysis with the environmental scanning electron microscope: interpretation of data obtained under different atmospheric conditions.
    Sigee DC; Gilpin C
    Scanning Microsc Suppl; 1994; 8():219-27; discussion 227-9. PubMed ID: 7638489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of phi (rho z) curves and a windowless detector to the quantitative x-ray microanalysis of frozen-hydrated bulk biological specimens.
    Marshall AT
    Scan Electron Microsc; 1982; (Pt 1):243-60. PubMed ID: 7167747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films.
    Kern P; Müller Y; Patscheider J; Michler J
    J Phys Chem B; 2006 Nov; 110(47):23660-8. PubMed ID: 17125324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass determination of thin biological specimens for use in quantitative electron probe X-ray microanalysis.
    Linders PW; Stols AL; van de Vorstenbosch RA; Stadhouders AM
    Scan Electron Microsc; 1982; (Pt 4):1603-15. PubMed ID: 7184142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light element X-ray microanalysis in biology.
    Marshall AT
    Scanning Microsc Suppl; 1994; 8():187-99; discussion 199-201. PubMed ID: 7638487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of quantitative analytical electron microscopy to the mineral content of insect cuticle.
    Rasch R; Cribb BW; Barry J; Palmer CM
    Microsc Microanal; 2003 Apr; 9(2):152-4. PubMed ID: 12639241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.