These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Sami F; Faizan M; Faraz A; Siddiqui H; Yusuf M; Hayat S Nitric Oxide; 2018 Feb; 73():22-38. PubMed ID: 29275195 [TBL] [Abstract][Full Text] [Related]
3. NO signals in the haze: nitric oxide signalling in plant defence. Leitner M; Vandelle E; Gaupels F; Bellin D; Delledonne M Curr Opin Plant Biol; 2009 Aug; 12(4):451-8. PubMed ID: 19608448 [TBL] [Abstract][Full Text] [Related]
4. [Tyrosine nitration as regulatory post-translational modification of proteins]. Blium IaB; Krasylenko IuA; Iemets' AI Ukr Biokhim Zh (1999); 2009; 81(5):5-15. PubMed ID: 20387642 [TBL] [Abstract][Full Text] [Related]
5. Role of protein S-nitrosylation in plant growth and development. Liu Y; Liu Z; Wu X; Fang H; Huang D; Pan X; Liao W Plant Cell Rep; 2024 Jul; 43(8):204. PubMed ID: 39080060 [TBL] [Abstract][Full Text] [Related]
6. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. León J; Costa-Broseta Á Plant Cell Environ; 2020 Jan; 43(1):. PubMed ID: 31323702 [TBL] [Abstract][Full Text] [Related]
7. Protein S-nitrosylation: what's going on in plants? Astier J; Kulik A; Koen E; Besson-Bard A; Bourque S; Jeandroz S; Lamotte O; Wendehenne D Free Radic Biol Med; 2012 Sep; 53(5):1101-10. PubMed ID: 22750205 [TBL] [Abstract][Full Text] [Related]
9. New clues for a cold case: nitric oxide response to low temperature. Puyaubert J; Baudouin E Plant Cell Environ; 2014 Dec; 37(12):2623-30. PubMed ID: 24720833 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide-dependent posttranslational modification in plants: an update. Astier J; Lindermayr C Int J Mol Sci; 2012 Nov; 13(11):15193-208. PubMed ID: 23203119 [TBL] [Abstract][Full Text] [Related]
11. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. Kolbert Z; Feigl G; Bordé Á; Molnár Á; Erdei L Plant Physiol Biochem; 2017 Apr; 113():56-63. PubMed ID: 28187345 [TBL] [Abstract][Full Text] [Related]
12. Nitric oxide molecular targets: reprogramming plant development upon stress. Sánchez-Vicente I; Fernández-Espinosa MG; Lorenzo O J Exp Bot; 2019 Aug; 70(17):4441-4460. PubMed ID: 31327004 [TBL] [Abstract][Full Text] [Related]
13. Protein S-nitrosylation in programmed cell death in plants. Huang D; Huo J; Zhang J; Wang C; Wang B; Fang H; Liao W Cell Mol Life Sci; 2019 May; 76(10):1877-1887. PubMed ID: 30783684 [TBL] [Abstract][Full Text] [Related]
14. Protein S-nitrosylation in plants: photorespiratory metabolism and NO signaling. Gupta KJ Sci Signal; 2011 Jan; 4(154):jc1. PubMed ID: 21205936 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. Courtois C; Besson A; Dahan J; Bourque S; Dobrowolska G; Pugin A; Wendehenne D J Exp Bot; 2008; 59(2):155-63. PubMed ID: 18212029 [TBL] [Abstract][Full Text] [Related]
16. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Kumari R; Kapoor P; Mir BA; Singh M; Parrey ZA; Rakhra G; Parihar P; Khan MN; Rakhra G Nitric Oxide; 2024 Sep; 150():1-17. PubMed ID: 38972538 [TBL] [Abstract][Full Text] [Related]