BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21893530)

  • 1. The thalamic low-threshold Ca²⁺ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks.
    Crunelli V; Errington AC; Hughes SW; Tóth TI
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3820-39. PubMed ID: 21893530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo.
    Crunelli V; Lörincz ML; Errington AC; Hughes SW
    Pflugers Arch; 2012 Jan; 463(1):73-88. PubMed ID: 21892727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    J Neurosci; 2002 Oct; 22(19):8691-704. PubMed ID: 12351744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo.
    Dossi RC; Nuñez A; Steriade M
    J Physiol; 1992 Feb; 447():215-34. PubMed ID: 1593448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thalamus mediates neocortical Down state transition via GABA
    Hay YA; Deperrois N; Fuchsberger T; Quarrell TM; Koerling AL; Paulsen O
    Neuron; 2021 Sep; 109(17):2682-2690.e5. PubMed ID: 34314698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of spindle waves in a thalamic slice model.
    Golomb D; Wang XJ; Rinzel J
    J Neurophysiol; 1996 Feb; 75(2):750-69. PubMed ID: 8714650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active neocortical processes during quiescent sleep.
    Steriade M
    Arch Ital Biol; 2001 Feb; 139(1-2):37-51. PubMed ID: 11256186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep spindles are generated in the absence of T-type calcium channel-mediated low-threshold burst firing of thalamocortical neurons.
    Lee J; Song K; Lee K; Hong J; Lee H; Chae S; Cheong E; Shin HS
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20266-71. PubMed ID: 24282303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential thalamic contribution to slow waves of natural sleep.
    David F; Schmiedt JT; Taylor HL; Orban G; Di Giovanni G; Uebele VN; Renger JJ; Lambert RC; Leresche N; Crunelli V
    J Neurosci; 2013 Dec; 33(50):19599-610. PubMed ID: 24336724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3252-65. PubMed ID: 8340806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro.
    Blethyn KL; Hughes SW; Tóth TI; Cope DW; Crunelli V
    J Neurosci; 2006 Mar; 26(9):2474-86. PubMed ID: 16510726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.
    Sheroziya M; Timofeev I
    J Neurosci; 2015 Sep; 35(38):13006-19. PubMed ID: 26400932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators.
    Crunelli V; Hughes SW
    Nat Neurosci; 2010 Jan; 13(1):9-17. PubMed ID: 19966841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks.
    Steriade M; Contreras D; Amzica F; Timofeev I
    J Neurosci; 1996 Apr; 16(8):2788-808. PubMed ID: 8786454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRPM4 Conductances in Thalamic Reticular Nucleus Neurons Generate Persistent Firing during Slow Oscillations.
    O'Malley JJ; Seibt F; Chin J; Beierlein M
    J Neurosci; 2020 Jun; 40(25):4813-4823. PubMed ID: 32414784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.