BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21893530)

  • 21. Dynamic Analysis of the Conditional Oscillator Underlying Slow Waves in Thalamocortical Neurons.
    David F; Crunelli V; Leresche N; Lambert RC
    Front Neural Circuits; 2016; 10():10. PubMed ID: 26941611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro.
    Errington AC; Hughes SW; Crunelli V
    J Physiol; 2012 Aug; 590(16):3691-700. PubMed ID: 22641775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleus- and species-specific properties of the slow (<1 Hz) sleep oscillation in thalamocortical neurons.
    Zhu L; Blethyn KL; Cope DW; Tsomaia V; Crunelli V; Hughes SW
    Neuroscience; 2006 Aug; 141(2):621-636. PubMed ID: 16777348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-range correlation of the membrane potential in neocortical neurons during slow oscillation.
    Volgushev M; Chauvette S; Timofeev I
    Prog Brain Res; 2011; 193():181-99. PubMed ID: 21854963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons.
    Errington AC; Renger JJ; Uebele VN; Crunelli V
    J Neurosci; 2010 Nov; 30(44):14843-53. PubMed ID: 21048143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thalamocortical bursts trigger recurrent activity in neocortical networks: layer 4 as a frequency-dependent gate.
    Beierlein M; Fall CP; Rinzel J; Yuste R
    J Neurosci; 2002 Nov; 22(22):9885-94. PubMed ID: 12427845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics.
    Crunelli V; Blethyn KL; Cope DW; Hughes SW; Parri HR; Turner JP; Tòth TI; Williams SR
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1675-93. PubMed ID: 12626003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sleep waves in a large-scale corticothalamic model constrained by activities intrinsic to neocortical networks and single thalamic neurons.
    Dervinis M; Crunelli V
    CNS Neurosci Ther; 2024 Mar; 30(3):e14206. PubMed ID: 37072918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thalamic dual control of sleep and wakefulness.
    Gent TC; Bandarabadi M; Herrera CG; Adamantidis AR
    Nat Neurosci; 2018 Jul; 21(7):974-984. PubMed ID: 29892048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro.
    Hughes SW; Cope DW; Blethyn KL; Crunelli V
    Neuron; 2002 Mar; 33(6):947-58. PubMed ID: 11906700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of cortical deafferentation on the neocortical slow oscillation.
    Lemieux M; Chen JY; Lonjers P; Bazhenov M; Timofeev I
    J Neurosci; 2014 Apr; 34(16):5689-703. PubMed ID: 24741059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Backpropagation of the delta oscillation and the retinal excitatory postsynaptic potential in a multi-compartment model of thalamocortical neurons.
    Emri Z; Antal K; Tóth TI; Cope DW; Crunelli V
    Neuroscience; 2000; 98(1):111-27. PubMed ID: 10858617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex.
    Deleuze C; David F; Béhuret S; Sadoc G; Shin HS; Uebele VN; Renger JJ; Lambert RC; Leresche N; Bal T
    J Neurosci; 2012 Aug; 32(35):12228-36. PubMed ID: 22933804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex.
    Fucke T; Suchanek D; Nawrot MP; Seamari Y; Heck DH; Aertsen A; Boucsein C
    J Neurophysiol; 2011 Dec; 106(6):3035-44. PubMed ID: 21849616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks.
    Blumenfeld H; McCormick DA
    J Neurosci; 2000 Jul; 20(13):5153-62. PubMed ID: 10864972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40 HZ) spike-bursts at approximately 1000 HZ during waking and rapid eye movement sleep.
    Steriade M; Curró Dossi R; Contreras D
    Neuroscience; 1993 Sep; 56(1):1-9. PubMed ID: 8232908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons.
    Connelly WM; Crunelli V; Errington AC
    J Neurosci; 2017 May; 37(21):5319-5333. PubMed ID: 28450536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.