BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 21893688)

  • 21. Effects of atorvastatin on fine particle-induced inflammatory response, oxidative stress and endothelial function in human umbilical vein endothelial cells.
    Zhao J; Xie Y; Jiang R; Kan H; Song W
    Hum Exp Toxicol; 2011 Nov; 30(11):1828-39. PubMed ID: 21357632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1α/VEGF pathway.
    Song S; Xiao X; Guo D; Mo L; Bu C; Ye W; Den Q; Liu S; Yang X
    Phytomedicine; 2017 Oct; 34():115-126. PubMed ID: 28899493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1alpha stabilization.
    Köhl R; Zhou J; Brüne B
    Free Radic Biol Med; 2006 Apr; 40(8):1430-42. PubMed ID: 16631533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species.
    Mansfield KD; Simon MC; Keith B
    J Appl Physiol (1985); 2004 Oct; 97(4):1358-66. PubMed ID: 15180977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension.
    Adesina SE; Kang BY; Bijli KM; Ma J; Cheng J; Murphy TC; Michael Hart C; Sutliff RL
    Free Radic Biol Med; 2015 Oct; 87():36-47. PubMed ID: 26073127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death.
    Lluis JM; Buricchi F; Chiarugi P; Morales A; Fernandez-Checa JC
    Cancer Res; 2007 Aug; 67(15):7368-77. PubMed ID: 17671207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyanidin-3-O-glucoside modulates intracellular redox status and prevents HIF-1 stabilization in endothelial cells in vitro exposed to chronic hypoxia.
    Anwar S; Speciale A; Fratantonio D; Cristani M; Saija A; Virgili F; Cimino F
    Toxicol Lett; 2014 Apr; 226(2):206-13. PubMed ID: 24518827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypoxia and aerobic metabolism adaptations of human endothelial cells.
    Koziel A; Jarmuszkiewicz W
    Pflugers Arch; 2017 Jun; 469(5-6):815-827. PubMed ID: 28176017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury.
    Rayner BS; Duong TT; Myers SJ; Witting PK
    J Neurochem; 2006 Apr; 97(1):211-21. PubMed ID: 16524376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells.
    Ishihara Y; Katayama K; Sakabe M; Kitamura M; Aizawa M; Takara M; Itoh K
    J Biosci Bioeng; 2011 Dec; 112(6):638-42. PubMed ID: 21889400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown.
    Al Ahmad A; Gassmann M; Ogunshola OO
    Microvasc Res; 2012 Sep; 84(2):222-5. PubMed ID: 22668821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species.
    Lee B; Kim KH; Jung HJ; Kwon HJ
    Biochem Biophys Res Commun; 2012 Apr; 421(1):76-80. PubMed ID: 22483751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer.
    Archer SL; Gomberg-Maitland M; Maitland ML; Rich S; Garcia JG; Weir EK
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H570-8. PubMed ID: 18083891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS.
    Zepeda AB; Pessoa A; Castillo RL; Figueroa CA; Pulgar VM; Farías JG
    Cell Biochem Funct; 2013 Aug; 31(6):451-9. PubMed ID: 23760768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for resveratrol-induced preservation of brain mitochondria functions after hypoxia-reoxygenation.
    Morin C; Zini R; Albengres E; Bertelli AA; Bertelli A; Tillement JP
    Drugs Exp Clin Res; 2003; 29(5-6):227-33. PubMed ID: 15134379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperglycaemia modifies energy metabolism and reactive oxygen species formation in endothelial cells in vitro.
    Dymkowska D; Drabarek B; Podszywałow-Bartnicka P; Szczepanowska J; Zabłocki K
    Arch Biochem Biophys; 2014 Jan; 542():7-13. PubMed ID: 24295959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TNFα affects energy metabolism and stimulates biogenesis of mitochondria in EA.hy926 endothelial cells.
    Drabarek B; Dymkowska D; Szczepanowska J; Zabłocki K
    Int J Biochem Cell Biol; 2012 Sep; 44(9):1390-7. PubMed ID: 22687752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Curcumin improves hypoxia induced dysfunctions in 3T3-L1 adipocytes by protecting mitochondria and down regulating inflammation.
    Priyanka A; Anusree SS; Nisha VM; Raghu KG
    Biofactors; 2014; 40(5):513-23. PubMed ID: 25110893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.
    Thomas JL; Pham H; Li Y; Hall E; Perkins GA; Ali SS; Patel HH; Singh P
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F282-F290. PubMed ID: 28331062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.