These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21893803)

  • 1. Automatic definition of the oncologic EHR data elements from NCIT in OWL.
    Cuggia M; Bourdé A; Turlin B; Vincendeau S; Bertaud V; Bohec C; Duvauferrier R
    Stud Health Technol Inform; 2011; 169():517-21. PubMed ID: 21893803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.
    Lezcano L; Sicilia MA; Rodríguez-Solano C
    J Biomed Inform; 2011 Apr; 44(2):343-53. PubMed ID: 21118725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Definition Ontology for clinical data integration and querying.
    Assélé Kama A; Primadhanty A; Choquet R; Teodoro D; Enders F; Duclos C; Jaulent MC
    Stud Health Technol Inform; 2012; 180():38-42. PubMed ID: 22874148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Describing localized diseases in medical ontology: an FMA-based algorithm.
    Charlet J; Mazuel L; Declerck G; Miroux P; Gayet P
    Stud Health Technol Inform; 2014; 205():1023-7. PubMed ID: 25160343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating an ontology driven rules base for an expert system for medical diagnosis.
    Bertaud Gounot V; Donfack V; Lasbleiz J; Bourde A; Duvauferrier R
    Stud Health Technol Inform; 2011; 169():714-8. PubMed ID: 21893840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.
    Bibault JE; Zapletal E; Rance B; Giraud P; Burgun A
    PLoS One; 2018; 13(1):e0191263. PubMed ID: 29351341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility.
    Marcos M; Maldonado JA; Martínez-Salvador B; Boscá D; Robles M
    J Biomed Inform; 2013 Aug; 46(4):676-89. PubMed ID: 23707417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MELLO: Medical lifelog ontology for data terms from self-tracking and lifelog devices.
    Kim HH; Lee SY; Baik SY; Kim JH
    Int J Med Inform; 2015 Dec; 84(12):1099-110. PubMed ID: 26383495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A knowledge-driven approach to biomedical document conceptualization.
    Zheng HT; Borchert C; Jiang Y
    Artif Intell Med; 2010 Jun; 49(2):67-78. PubMed ID: 20371168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical data integration model. Core interoperability ontology for research using primary care data.
    Ethier JF; Curcin V; Barton A; McGilchrist MM; Bastiaens H; Andreasson A; Rossiter J; Zhao L; Arvanitis TN; Taweel A; Delaney BC; Burgun A
    Methods Inf Med; 2015; 54(1):16-23. PubMed ID: 24954896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontology for heart rate turbulence domain from the conceptual model of SNOMED-CT.
    Soguero-Ruiz C; Lechuga-Suárez L; Mora-Jiménez I; Ramos-López J; Barquero-Pérez Ó; García-Alberola A; Rojo-Álvarez JL
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1825-33. PubMed ID: 23372067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A relation based measure of semantic similarity for Gene Ontology annotations.
    Sheehan B; Quigley A; Gaudin B; Dobson S
    BMC Bioinformatics; 2008 Nov; 9():468. PubMed ID: 18983678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontology-based framework for electronic health records interoperability.
    González C; Blobel BG; López DM
    Stud Health Technol Inform; 2011; 169():694-8. PubMed ID: 21893836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Foundational Model of Anatomy in OWL 2 and its use.
    Golbreich C; Grosjean J; Darmoni SJ
    Artif Intell Med; 2013 Feb; 57(2):119-32. PubMed ID: 23273493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the ResearchEHR platform to facilitate the practical application of the EHR standards.
    Maldonado JA; Costa CM; Moner D; Menárguez-Tortosa M; Boscá D; Miñarro Giménez JA; Fernández-Breis JT; Robles M
    J Biomed Inform; 2012 Aug; 45(4):746-62. PubMed ID: 22142945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to an animal trait ontology.
    Hulsegge B; Smits MA; te Pas MF; Woelders H
    J Anim Sci; 2012 Jun; 90(6):2061-6. PubMed ID: 22228038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The usability-error ontology.
    Elkin PL; Beuscart-Zephir MC; Pelayo S; Patel V; Nøhr C
    Stud Health Technol Inform; 2013; 194():91-6. PubMed ID: 23941937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining of EHR for interface terminology concepts for annotating EHRs of COVID patients.
    Keloth VK; Zhou S; Lindemann L; Zheng L; Elhanan G; Einstein AJ; Geller J; Perl Y
    BMC Med Inform Decis Mak; 2023 Feb; 23(Suppl 1):40. PubMed ID: 36829139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an ECG reference ontology for semantic interoperability of ECG data.
    Gonçalves B; Guizzardi G; Pereira Filho JG
    J Biomed Inform; 2011 Feb; 44(1):126-36. PubMed ID: 20800107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ontology of cancer therapies supporting interoperability and data consistency in EPRs.
    Eccher C; Scipioni A; Miller AA; Ferro A; Pisanelli DM
    Comput Biol Med; 2013 Aug; 43(7):822-32. PubMed ID: 23746723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.