These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21894948)

  • 1. Photomodulated rayleigh scattering of single semiconductor nanowires: probing electronic band structure.
    Montazeri M; Wade A; Fickenscher M; Jackson HE; Smith LM; Yarrison-Rice JM; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2011 Oct; 11(10):4329-36. PubMed ID: 21894948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.
    Wang Y; Jackson HE; Smith LM; Burgess T; Paiman S; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2014 Dec; 14(12):7153-60. PubMed ID: 25382815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarized Rayleigh back-scattering from individual semiconductor nanowires.
    Zhang D; Wu J; Lu Q; Gutierrez HR; Eklund PC
    Nanotechnology; 2010 Aug; 21(31):315202. PubMed ID: 20634572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient Rayleigh scattering: a new probe of picosecond carrier dynamics in a single semiconductor nanowire.
    Montazeri M; Jackson HE; Smith LM; Yarrison-Rice JM; Kang JH; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2012 Oct; 12(10):5389-95. PubMed ID: 22974064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires.
    Lopez FJ; Hyun JK; Givan U; Kim IS; Holsteen AL; Lauhon LJ
    Nano Lett; 2012 May; 12(5):2266-71. PubMed ID: 22497202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy.
    Ketterer B; Heiss M; Uccelli E; Arbiol J; i Morral AF
    ACS Nano; 2011 Sep; 5(9):7585-92. PubMed ID: 21838304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering.
    Sfeir MY; Wang F; Huang L; Chuang CC; Hone J; O'brien SP; Heinz TF; Brus LE
    Science; 2004 Nov; 306(5701):1540-3. PubMed ID: 15514117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient light management in vertical nanowire arrays for photovoltaics.
    Anttu N; Xu HQ
    Opt Express; 2013 May; 21 Suppl 3():A558-75. PubMed ID: 24104444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption of light in a single vertical nanowire and a nanowire array.
    Anttu N
    Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering parallel and perpendicular polarized photoluminescence from a single semiconductor nanowire by crystal phase control.
    Ba Hoang T; Moses AF; Ahtapodov L; Zhou H; Dheeraj DL; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2010 Aug; 10(8):2927-33. PubMed ID: 20604543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twinning superlattice formation in GaAs nanowires.
    Burgess T; Breuer S; Caroff P; Wong-Leung J; Gao Q; Hoe Tan H; Jagadish C
    ACS Nano; 2013 Sep; 7(9):8105-14. PubMed ID: 23987994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires.
    Timofeeva M; Bouravleuv A; Cirlin G; Shtrom I; Soshnikov I; Reig Escalé M; Sergeyev A; Grange R
    Nano Lett; 2016 Oct; 16(10):6290-6297. PubMed ID: 27657488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metamorphic GaAs/GaAsBi Heterostructured Nanowires.
    Ishikawa F; Akamatsu Y; Watanabe K; Uesugi F; Asahina S; Jahn U; Shimomura S
    Nano Lett; 2015 Nov; 15(11):7265-72. PubMed ID: 26501188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dense, Regular GaAs Nanowire Arrays by Catalyst-Free Vapor Phase Epitaxy for Light Harvesting.
    Jin J; Stoica T; Trellenkamp S; Chen Y; Anttu N; Migunov V; Kawabata RM; Buenconsejo PJ; Lam YM; Haas F; Hardtdegen H; Grützmacher D; Kardynał BE
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22484-92. PubMed ID: 27504951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially Resolved Doping Concentration and Nonradiative Lifetime Profiles in Single Si-Doped InP Nanowires Using Photoluminescence Mapping.
    Wang F; Gao Q; Peng K; Li Z; Li Z; Guo Y; Fu L; Smith LM; Tan HH; Jagadish C
    Nano Lett; 2015 May; 15(5):3017-23. PubMed ID: 25831461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Emitting GaAs Nanowires on a Flexible Substrate.
    Valente J; Godde T; Zhang Y; Mowbray DJ; Liu H
    Nano Lett; 2018 Jul; 18(7):4206-4213. PubMed ID: 29894627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on detecting concentration of serum protein based on resonance Rayleigh scattering].
    Wang G; Feng QL; Xue ZJ; Li YJ; Zhou HC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):752-5. PubMed ID: 23705447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.