BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 2189497)

  • 1. Use of a site-directed triple mutant to trap intermediates: demonstration that the flavin C(4a)-thiol adduct and reduced flavin are kinetically competent intermediates in mercuric ion reductase.
    Miller SM; Massey V; Ballou D; Williams CH; Distefano MD; Moore MJ; Walsh CT
    Biochemistry; 1990 Mar; 29(11):2831-41. PubMed ID: 2189497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of the redox-active disulfide in mercuric ion reductase: catalysis by mutant enzymes restricted to flavin redox chemistry.
    Distefano MD; Au KG; Walsh CT
    Biochemistry; 1989 Feb; 28(3):1168-83. PubMed ID: 2653436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed mutagenesis of the redox-active disulfide in the flavoenzyme mercuric ion reductase.
    Schultz PG; Au KG; Walsh CT
    Biochemistry; 1985 Nov; 24(24):6840-8. PubMed ID: 3907703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid reduction of Hg(II) by mercuric ion reductase does not require the conserved C-terminal cysteine pair using HgBr2 as the substrate.
    Engst S; Miller SM
    Biochemistry; 1998 Aug; 37(33):11496-507. PubMed ID: 9708985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal cysteines of Tn501 mercuric ion reductase.
    Moore MJ; Miller SM; Walsh CT
    Biochemistry; 1992 Feb; 31(6):1677-85. PubMed ID: 1531297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin.
    Veine DM; Mulrooney SB; Wang PF; Williams CH
    Protein Sci; 1998 Jun; 7(6):1441-50. PubMed ID: 9655349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the catalytic properties of p-hydroxybenzoate hydroxylase caused by the mutation Asn300Asp.
    Palfey BA; Entsch B; Ballou DP; Massey V
    Biochemistry; 1994 Feb; 33(6):1545-54. PubMed ID: 8312275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the flavin-protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study.
    Keirsse-Haquin J; Picaud T; Bordes L; de Gracia AG; Desbois A
    Eur Biophys J; 2018 Apr; 47(3):205-223. PubMed ID: 28889232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs.
    Prongay AJ; Williams CH
    J Biol Chem; 1990 Nov; 265(31):18968-75. PubMed ID: 2229055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of Escherichia coli thioredoxin reductase with 1-deazaFAD. Evidence for 1-deazaFAD C-4a adduct formation linked to the ionization of an active site base.
    O'Donnell ME; Williams CH
    J Biol Chem; 1984 Feb; 259(4):2243-51. PubMed ID: 6365906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Redox properties of the FAD and interactions with pyridine nucleotides.
    Hopkins N; Williams CH
    Biochemistry; 1995 Sep; 34(37):11766-76. PubMed ID: 7547909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2'-fluoro-2'-deoxy-D-arabinoflavin: characterization of a novel flavin and its effects on the formation and stability of two-electron-reduced mercuric ion reductase.
    Miller SM
    Biochemistry; 1995 Oct; 34(40):13066-73. PubMed ID: 7548066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation-reduction properties of Escherichia coli thioredoxin reductase altered at each active site cysteine residue.
    Prongay AJ; Williams CH
    J Biol Chem; 1992 Dec; 267(35):25181-8. PubMed ID: 1460018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-electron reduced mercuric reductase binds Hg(II) to the active site dithiol but does not catalyze Hg(II) reduction.
    Miller SM; Ballou DP; Massey V; Williams CH; Walsh CT
    J Biol Chem; 1986 Jun; 261(18):8081-4. PubMed ID: 3522563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.