BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21894995)

  • 1. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells.
    Wu H; Chen W
    J Am Chem Soc; 2011 Oct; 133(39):15236-9. PubMed ID: 21894995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes).
    Kang Y; Murray CB
    J Am Chem Soc; 2010 Jun; 132(22):7568-9. PubMed ID: 20469855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Completely green synthesis of colloid Adams' catalyst α-PtO2 nanocrystals and derivative Pt nanocrystals with high activity and stability for oxygen reduction.
    Gao MR; Lin ZY; Jiang J; Cui CH; Zheng YR; Yu SH
    Chemistry; 2012 Jul; 18(27):8423-9. PubMed ID: 22696395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals.
    Porter NS; Wu H; Quan Z; Fang J
    Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.
    Shimizu K; Wang JS; Wai CM
    J Phys Chem A; 2010 Mar; 114(11):3956-61. PubMed ID: 19827801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reactions in alkaline media.
    Kuai L; Geng B; Wang S; Zhao Y; Luo Y; Jiang H
    Chemistry; 2011 Mar; 17(12):3482-9. PubMed ID: 21344521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction.
    Zheng Y; Zhao S; Liu S; Yin H; Chen YY; Bao J; Han M; Dai Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5347-57. PubMed ID: 25695756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes.
    Zhang J; Fang J
    J Am Chem Soc; 2009 Dec; 131(51):18543-7. PubMed ID: 19928989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale template-free synthesis of ordered mesoporous platinum nanocubes and their electrocatalytic properties.
    Cao Y; Yang Y; Shan Y; Fu C; Long NV; Huang Z; Guo X; Nogami M
    Nanoscale; 2015 Dec; 7(46):19461-7. PubMed ID: 26399438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation.
    Yang L; Hu C; Wang J; Yang Z; Guo Y; Bai Z; Wang K
    Chem Commun (Camb); 2011 Aug; 47(30):8581-3. PubMed ID: 21709864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile construction of non-precious iron nitride-doped carbon nanofibers as cathode electrocatalysts for proton exchange membrane fuel cells.
    Palaniselvam T; Kannan R; Kurungot S
    Chem Commun (Camb); 2011 Mar; 47(10):2910-2. PubMed ID: 21240432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications.
    Brushett FR; Thorum MS; Lioutas NS; Naughton MS; Tornow C; Jhong HR; Gewirth AA; Kenis PJ
    J Am Chem Soc; 2010 Sep; 132(35):12185-7. PubMed ID: 20715828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells.
    Kim OH; Cho YH; Chung DY; Kim MJ; Yoo JM; Park JE; Choe H; Sung YE
    Sci Rep; 2015 Mar; 5():8376. PubMed ID: 25728910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction.
    Hwang SJ; Yoo SJ; Jeon TY; Lee KS; Lim TH; Sung YE; Kim SK
    Chem Commun (Camb); 2010 Nov; 46(44):8401-3. PubMed ID: 20927473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells.
    Lin Y; Cui X; Yen C; Wai CM
    J Phys Chem B; 2005 Aug; 109(30):14410-5. PubMed ID: 16852813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts.
    Wu J; Zhang J; Peng Z; Yang S; Wagner FT; Yang H
    J Am Chem Soc; 2010 Apr; 132(14):4984-5. PubMed ID: 20334375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction.
    Han M; Liu S; Zhang L; Zhang C; Tu W; Dai Z; Bao J
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6654-60. PubMed ID: 23157177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts.
    Sun S; Zhang G; Geng D; Chen Y; Banis MN; Li R; Cai M; Sun X
    Chemistry; 2010 Jan; 16(3):829-35. PubMed ID: 20024993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supported Pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts.
    Li Q; Xu P; Zhang B; Wu G; Zhao H; Fu E; Wang HL
    Nanoscale; 2013 Aug; 5(16):7397-402. PubMed ID: 23828129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.