BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21895003)

  • 1. Wiring of redox enzymes on three dimensional self-assembled molecular scaffold.
    Frasconi M; Heyman A; Medalsy I; Porath D; Mazzei F; Shoseyov O
    Langmuir; 2011 Oct; 27(20):12606-13. PubMed ID: 21895003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems.
    Yehezkeli O; Yan YM; Baravik I; Tel-Vered R; Willner I
    Chemistry; 2009 Mar; 15(11):2674-9. PubMed ID: 19180594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation.
    Holland JT; Lau C; Brozik S; Atanassov P; Banta S
    J Am Chem Soc; 2011 Dec; 133(48):19262-5. PubMed ID: 22050076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical activity of glucose oxidase on a poly(ionic liquid)-Au nanoparticle composite.
    Lee S; Ringstrand BS; Stone DA; Firestone MA
    ACS Appl Mater Interfaces; 2012 May; 4(5):2311-7. PubMed ID: 22548643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites.
    Baravik I; Tel-Vered R; Ovits O; Willner I
    Langmuir; 2009 Dec; 25(24):13978-83. PubMed ID: 19673510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wired-enzyme core-shell Au nanoparticle biosensor.
    Scodeller P; Flexer V; Szamocki R; Calvo EJ; Tognalli N; Troiani H; Fainstein A
    J Am Chem Soc; 2008 Sep; 130(38):12690-7. PubMed ID: 18763764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured materials based on the integration of ferrocenyl-tethered dendrimer and redox proteins on self-assembled monolayers: an efficient biosensor interface.
    Frasconi M; Deriu D; D'Annibale A; Mazzei F
    Nanotechnology; 2009 Dec; 20(50):505501. PubMed ID: 19907072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ growth of gold nanoparticles by enzymatic glucose oxidation within alginate gel matrix.
    Lim SY; Lee JS; Park CB
    Biotechnol Bioeng; 2010 Jan; 105(1):210-4. PubMed ID: 19718653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes.
    Cortez ML; Marmisollé W; Pallarola D; Pietrasanta LI; Murgida DH; Ceolín M; Azzaroni O; Battaglini F
    Chemistry; 2014 Oct; 20(41):13366-74. PubMed ID: 25171096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of homogeneity of analytical biodevices by gene manipulation.
    Shi JX; Zhang XE; Xie WH; Zhou YF; Zhang ZP; Deng JY; Cass AE; Zhang ZL; Pang DW; Zhang CG
    Anal Chem; 2004 Feb; 76(3):632-8. PubMed ID: 14750857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical studies of glucose oxidase immobilized on glutathione coated gold nanoparticles.
    Akella S; Mitra CK
    Indian J Biochem Biophys; 2007 Apr; 44(2):82-7. PubMed ID: 17536335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity.
    Pandey P; Singh SP; Arya SK; Gupta V; Datta M; Singh S; Malhotra BD
    Langmuir; 2007 Mar; 23(6):3333-7. PubMed ID: 17261046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor.
    Zhang S; Wang N; Yu H; Niu Y; Sun C
    Bioelectrochemistry; 2005 Sep; 67(1):15-22. PubMed ID: 15967397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles.
    Radhakumary C; Sreenivasan K
    Anal Chem; 2011 Apr; 83(7):2829-33. PubMed ID: 21391552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of self-assembled oligophenylethynylenethiol monolayer for electrochemical glucose biosensor.
    Jung SK; Namgung MO; Oh SY; Oh BK
    Ultramicroscopy; 2009 Jul; 109(8):911-5. PubMed ID: 19369004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-enzyme hybrid systems for nanobiotechnology.
    Willner I; Basnar B; Willner B
    FEBS J; 2007 Jan; 274(2):302-9. PubMed ID: 17181543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of protein binding in the poisoning of gold nanoparticle catalysts.
    Chen Y; Flowers K; Calizo M; Bishnoi SW
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):241-7. PubMed ID: 19939642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile multi-functionalization of protein nanofibrils for biosensor applications.
    Sasso L; Suei S; Domigan L; Healy J; Nock V; Williams MA; Gerrard JA
    Nanoscale; 2014; 6(3):1629-34. PubMed ID: 24337159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-catalyzed bio-pumping of electrons into au-nanoparticles: a surface plasmon resonance and electrochemical study.
    Lioubashevski O; Chegel VI; Patolsky F; Katz E; Willner I
    J Am Chem Soc; 2004 Jun; 126(22):7133-43. PubMed ID: 15174885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.