These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21895026)

  • 41. Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity.
    Lee O; Kim JM; Bresler Y; Ye JC
    IEEE Trans Med Imaging; 2011 May; 30(5):1129-42. PubMed ID: 21402507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mesh-based enhancement schemes in diffuse optical tomography.
    Gu X; Xu Y; Jiang H
    Med Phys; 2003 May; 30(5):861-9. PubMed ID: 12772994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of fluorescence molecular tomography with structural-prior-based diffuse optical tomography: combating optical background uncertainty.
    Wu L; Zhao H; Wang X; Yi X; Chen W; Gao F
    Appl Opt; 2014 Oct; 53(30):6970-82. PubMed ID: 25402783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser.
    Wang J; Jiang S; Paulsen KD; Pogue BW
    Appl Opt; 2009 Apr; 48(10):D198-207. PubMed ID: 19340109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gauss-Newton method for image reconstruction in diffuse optical tomography.
    Schweiger M; Arridge SR; Nissilä I
    Phys Med Biol; 2005 May; 50(10):2365-86. PubMed ID: 15876673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography.
    Srinivasan S; Pogue BW; Jiang S; Dehghani H; Kogel C; Soho S; Gibson JJ; Tosteson TD; Poplack SP; Paulsen KD
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12349-54. PubMed ID: 14514888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A wireless handheld probe with spectrally constrained evolution strategies for diffuse optical imaging of tissue.
    Flexman ML; Kim HK; Stoll R; Khalil MA; Fong CJ; Hielscher AH
    Rev Sci Instrum; 2012 Mar; 83(3):033108. PubMed ID: 22462907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography.
    Yalavarthy PK; Pogue BW; Dehghani H; Paulsen KD
    Med Phys; 2007 Jun; 34(6):2085-98. PubMed ID: 17654912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography.
    Flexman ML; Kim HK; Gunther JE; Lim EA; Alvarez MC; Desperito E; Kalinsky K; Hershman DL; Hielscher AH
    J Biomed Opt; 2013 Sep; 18(9):096012. PubMed ID: 24048367
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimal wavelength selection for optical spectroscopy of hemoglobin and water within a simulated light-scattering tissue.
    Marois M; Jacques SL; Paulsen KD
    J Biomed Opt; 2018 Jan; 23(7):1-5. PubMed ID: 29372632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography.
    Chen LY; Pan MC; Pan MC
    Appl Opt; 2012 Jan; 51(1):43-54. PubMed ID: 22270412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A time-domain wavelet-based approach for fluorescence diffuse optical tomography.
    Ducros N; Da Silva A; Dinten JM; Seelamantula CS; Unser M; Peyrin F
    Med Phys; 2010 Jun; 37(6):2890-900. PubMed ID: 20632600
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography.
    Li A; Zhang Q; Culver JP; Miller EL; Boas DA
    Opt Lett; 2004 Feb; 29(3):256-8. PubMed ID: 14759043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography.
    Boverman G; Fang Q; Carp SA; Miller EL; Brooks DH; Selb J; Moore RH; Kopans DB; Boas DA
    Phys Med Biol; 2007 Jun; 52(12):3619-41. PubMed ID: 17664563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study.
    Lin Y; Gao H; Nalcioglu O; Gulsen G
    Phys Med Biol; 2007 Sep; 52(18):5569-85. PubMed ID: 17804882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accelerated boundary element method for diffuse optical imaging.
    Elisee J; Bonnet M; Arridge S
    Opt Lett; 2011 Oct; 36(20):4101-3. PubMed ID: 22002399
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging.
    Mazhar A; Dell S; Cuccia DJ; Gioux S; Durkin AJ; Frangioni JV; Tromberg BJ
    J Biomed Opt; 2010; 15(6):061716. PubMed ID: 21198164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromophore concentrations, absorption and scattering properties of human skin in-vivo.
    Tseng SH; Bargo P; Durkin A; Kollias N
    Opt Express; 2009 Aug; 17(17):14599-617. PubMed ID: 19687939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations.
    Uludag K; Kohl M; Steinbrink J; Obrig H; Villringer A
    J Biomed Opt; 2002 Jan; 7(1):51-9. PubMed ID: 11818012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multimodal imaging combining time-domain near-infrared optical tomography and continuous-wave fluorescence molecular tomography.
    Ren W; Jiang J; Costanzo Mata AD; Kalyanov A; Ripoll J; Lindner S; Charbon E; Zhang C; Rudin M; Wolf M
    Opt Express; 2020 Mar; 28(7):9860-9874. PubMed ID: 32225585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.