These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 21895055)

  • 1. Nonlinear acoustic wave equations with fractional loss operators.
    Prieur F; Holm S
    J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).
    Prieur F; Vilenskiy G; Holm S
    J Acoust Soc Am; 2012 Oct; 132(4):2169-72. PubMed ID: 23039412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking multiple relaxation, power-law attenuation, and fractional wave equations.
    Näsholm SP; Holm S
    J Acoust Soc Am; 2011 Nov; 130(5):3038-45. PubMed ID: 22087931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.
    Maestas JT; Collis JM
    J Acoust Soc Am; 2016 Mar; 139(3):1420-9. PubMed ID: 27036279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the transient solutions of three acoustic wave equations: van Wijngaarden's equation, Stokes' equation and the time-dependent diffusion equation.
    Buckingham MJ
    J Acoust Soc Am; 2008 Oct; 124(4):1909-20. PubMed ID: 19062830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A causal and fractional all-frequency wave equation for lossy media.
    Holm S; Näsholm SP
    J Acoust Soc Am; 2011 Oct; 130(4):2195-202. PubMed ID: 21973374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
    Holm S; Näsholm SP
    Ultrasound Med Biol; 2014 Apr; 40(4):695-703. PubMed ID: 24433745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear progressive wave equation for stratified atmospheres.
    Edward McDonald B; Piacsek AA
    J Acoust Soc Am; 2011 Nov; 130(5):2648-53. PubMed ID: 22087891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the third- and fourth-order constants of incompressible isotropic elasticity.
    Destrade M; Ogden RW
    J Acoust Soc Am; 2010 Dec; 128(6):3334-43. PubMed ID: 21218867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation.
    Caputo M; Carcione JM; Cavallini F
    Ultrasound Med Biol; 2011 Jun; 37(6):996-1004. PubMed ID: 21601139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unifying fractional wave equation for compressional and shear waves.
    Holm S; Sinkus R
    J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L).
    Qu J; Jacobs LJ; Nagy PB
    J Acoust Soc Am; 2011 Jun; 129(6):3449-52. PubMed ID: 21682368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weakly nonlinear propagation of focused ultrasound in bubbly liquids with a thermal effect: Derivation of two cases of Khokolov-Zabolotskaya-Kuznetsoz equations.
    Kagami S; Kanagawa T
    Ultrason Sonochem; 2022 Aug; 88():105911. PubMed ID: 35810619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2014 Oct; 136(4):1499-510. PubMed ID: 25324054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteretic nonlinearity analysis in damaged composite plates using guided waves.
    Baccouche Y; Bentahar M; Mechri C; El Guerjouma R; Hédi Ben Ghozlen M
    J Acoust Soc Am; 2013 Apr; 133(4):EL256-61. PubMed ID: 23556688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
    Averiyanov M; Blanc-Benon P; Cleveland RO; Khokhlova V
    J Acoust Soc Am; 2011 Apr; 129(4):1760-72. PubMed ID: 21476633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear shear wave interaction in soft solids.
    Jacob X; Catheline S; Gennisson JL; Barrière C; Royer D; Fink M
    J Acoust Soc Am; 2007 Oct; 122(4):1917-26. PubMed ID: 17902828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site.
    Choi JW; Dahl PH; Goff JA
    J Acoust Soc Am; 2008 Sep; 124(3):EL128-34. PubMed ID: 19045554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.