These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
978 related articles for article (PubMed ID: 21895060)
1. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range. Duda TF; Lin YT; Reeder DB J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060 [TBL] [Abstract][Full Text] [Related]
2. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas. Lin YT; McMahon KG; Lynch JF; Siegmann WL J Acoust Soc Am; 2013 Jan; 133(1):37-49. PubMed ID: 23297881 [TBL] [Abstract][Full Text] [Related]
3. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface. Senne J; Song A; Badiey M; Smith KB J Acoust Soc Am; 2012 Sep; 132(3):1311-8. PubMed ID: 22978859 [TBL] [Abstract][Full Text] [Related]
4. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations. Rouseff D; Tang D; Williams KL; Wang Z; Moum JN J Acoust Soc Am; 2008 Sep; 124(3):EL73-7. PubMed ID: 19045565 [TBL] [Abstract][Full Text] [Related]
5. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions. Badiey M; Song A; Smith KB J Acoust Soc Am; 2012 Oct; 132(4):EL290-5. PubMed ID: 23039567 [TBL] [Abstract][Full Text] [Related]
6. A stochastic response surface formulation for the description of acoustic propagation through an uncertain internal wave field. Gerdes F; Finette S J Acoust Soc Am; 2012 Oct; 132(4):2251-64. PubMed ID: 23039422 [TBL] [Abstract][Full Text] [Related]
7. Observation of sound focusing and defocusing due to propagating nonlinear internal waves. Luo J; Badiey M; Karjadi EA; Katsnelson B; Tskhoidze A; Lynch JF; Moum JN J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564 [TBL] [Abstract][Full Text] [Related]
8. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves. Colosi JA J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637 [TBL] [Abstract][Full Text] [Related]
9. Focused sound from three-dimensional sound propagation effects over a submarine canyon. Chiu LY; Lin YT; Chen CF; Duda TF; Calder B J Acoust Soc Am; 2011 Jun; 129(6):EL260-6. PubMed ID: 21682362 [TBL] [Abstract][Full Text] [Related]
10. Bottom interacting sound at 50 km range in a deep ocean environment. Udovydchenkov IA; Stephen RA; Duda TF; Bolmer ST; Worcester PF; Dzieciuch MA; Mercer JA; Andrew RK; Howe BM J Acoust Soc Am; 2012 Oct; 132(4):2224-31. PubMed ID: 23039419 [TBL] [Abstract][Full Text] [Related]
13. Information and linearity of time-domain complex demodulated amplitude and phase data in shallow water. Sarkar J; Cornuelle BD; Kuperman WA J Acoust Soc Am; 2011 Sep; 130(3):1242-52. PubMed ID: 21895067 [TBL] [Abstract][Full Text] [Related]
14. Vertical coherence and forward scattering from the sea surface and the relation to the directional wave spectrum. Dahl PH; Plant WJ; Dall'Osto DR J Acoust Soc Am; 2013 Sep; 134(3):1843-53. PubMed ID: 23967918 [TBL] [Abstract][Full Text] [Related]
15. Effects of upper ocean sound-speed structure on deep acoustic shadow-zone arrivals at 500- and 1000-km range. Van Uffelen LJ; Worcester PF; Dzieciuch MA; Rudnick DL; Colosi JA J Acoust Soc Am; 2010 Apr; 127(4):2169-81. PubMed ID: 20369998 [TBL] [Abstract][Full Text] [Related]