BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 21895075)

  • 1. A hybrid approach for predicting the distribution of vibro-acoustic energy in complex built-up structures.
    Maksimov DN; Tanner G
    J Acoust Soc Am; 2011 Sep; 130(3):1337-47. PubMed ID: 21895075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical and experimental validation of a hybrid finite element-statistical energy analysis method.
    Cotoni V; Shorter P; Langley R
    J Acoust Soc Am; 2007 Jul; 122(1):259-70. PubMed ID: 17614486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.
    Langley RS; Cotoni V
    J Acoust Soc Am; 2010 Apr; 127(4):2118-28. PubMed ID: 20369993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical energy analysis for built-up acoustic systems at high frequencies.
    Chappell DJ; Giani S; Tanner G
    J Acoust Soc Am; 2011 Sep; 130(3):1420-9. PubMed ID: 21895083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of high-frequency vibration transmission across coupled, periodic ribbed plates by incorporating tunneling mechanisms.
    Yin J; Hopkins C
    J Acoust Soc Am; 2013 Apr; 133(4):2069-81. PubMed ID: 23556577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames.
    Maxit L; Ginoux JM
    J Acoust Soc Am; 2010 Jul; 128(1):137-51. PubMed ID: 20649209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the statistical wave field description using the Waterhouse correction.
    Prager J; Petersson BA
    J Acoust Soc Am; 2010 Jul; 128(1):20-7. PubMed ID: 20649197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical prediction of break-out noise from a reactive rectangular plenum with four flexible walls.
    Venkatesham B; Tiwari M; Munjal ML
    J Acoust Soc Am; 2010 Oct; 128(4):1789-99. PubMed ID: 20968352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound transmission through finite lightweight multilayered structures with thin air layers.
    Dijckmans A; Vermeir G; Lauriks W
    J Acoust Soc Am; 2010 Dec; 128(6):3513-24. PubMed ID: 21218884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response variance prediction for uncertain vibro-acoustic systems using a hybrid deterministic-statistical method.
    Langley RS; Cotoni V
    J Acoust Soc Am; 2007 Dec; 122(6):3445-63. PubMed ID: 18247754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiobjective muffler shape optimization with hybrid acoustics modeling.
    Airaksinen T; Heikkola E
    J Acoust Soc Am; 2011 Sep; 130(3):1359-69. PubMed ID: 21895077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses.
    Cutanda-Henríquez V; Juhl PM
    J Acoust Soc Am; 2013 Nov; 134(5):3409-18. PubMed ID: 24180751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic radiation of a submerged cylindrical shell in low frequency.
    Van de Loock J; Décultot D; Léon F; Chati F; Maze G; Rajaona DR; Klauson A
    J Acoust Soc Am; 2013 Jan; 133(1):EL26-32. PubMed ID: 23298014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of an oscillating circuit on the radiation of transient acoustic waves by an electroelastic cylinder.
    Babaev AE; Babaev AA; Yanchevskiy IV
    J Acoust Soc Am; 2010 Apr; 127(4):2282-9. PubMed ID: 20370009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
    Dijckmans A; Vermeir G
    J Acoust Soc Am; 2013 Apr; 133(4):2157-68. PubMed ID: 23556585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trumpet with near-perfect harmonicity: design and acoustic results.
    Macaluso CA; Dalmont JP
    J Acoust Soc Am; 2011 Jan; 129(1):404-14. PubMed ID: 21303020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.