BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 21895080)

  • 1. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
    Groby JP; Dazel O; Depollier C; Ogam E; Kelders L
    J Acoust Soc Am; 2012 Jul; 132(1):477-86. PubMed ID: 22779494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
    Dijckmans A; Vermeir G
    J Acoust Soc Am; 2013 Apr; 133(4):2157-68. PubMed ID: 23556585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic wave propagation in equivalent fluid macroscopically inhomogeneous materials.
    Cieszko M; Drelich R; Pakula M
    J Acoust Soc Am; 2012 Nov; 132(5):2970-7. PubMed ID: 23145584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
    Groby JP; Brouard B; Dazel O; Nennig B; Kelders L
    J Acoust Soc Am; 2013 Feb; 133(2):821-31. PubMed ID: 23363101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models.
    Rumpler R; Deü JF; Göransson P
    J Acoust Soc Am; 2012 Nov; 132(5):3162-79. PubMed ID: 23145601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative Biot's displacement formulation for porous materials.
    Dazel O; Brouard B; Depollier C; Griffiths S
    J Acoust Soc Am; 2007 Jun; 121(6):3509-16. PubMed ID: 17552703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating.
    Groby JP; Lauriks W; Vigran TE
    J Acoust Soc Am; 2010 May; 127(5):2865-74. PubMed ID: 21117737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative Biot's formulation for dissipative porous media with skeleton deformation.
    Bécot FX; Jaouen L
    J Acoust Soc Am; 2013 Dec; 134(6):4801. PubMed ID: 25669292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The forced sound transmission of finite single leaf walls using a variational technique.
    Brunskog J
    J Acoust Soc Am; 2012 Sep; 132(3):1482-93. PubMed ID: 22978877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound absorption of porous substrates covered by foliage: experimental results and numerical predictions.
    Ding L; Van Renterghem T; Botteldooren D; Horoshenkov K; Khan A
    J Acoust Soc Am; 2013 Dec; 134(6):4599. PubMed ID: 25669272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound transmission through finite lightweight multilayered structures with thin air layers.
    Dijckmans A; Vermeir G; Lauriks W
    J Acoust Soc Am; 2010 Dec; 128(6):3513-24. PubMed ID: 21218884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow.
    Nennig B; Perrey-Debain E; Ben Tahar M
    J Acoust Soc Am; 2010 Dec; 128(6):3308-20. PubMed ID: 21218865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustical properties of double porosity granular materials.
    Venegas R; Umnova O
    J Acoust Soc Am; 2011 Nov; 130(5):2765-76. PubMed ID: 22087905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an analytical solution of modified Biot's equations for the optimization of lightweight acoustic protection.
    Kanfoud J; Ali Hamdi M; Becot FX; Jaouen L
    J Acoust Soc Am; 2009 Feb; 125(2):863-72. PubMed ID: 19206863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.