These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21895089)

  • 1. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.
    Bidelman GM; Heinz MG
    J Acoust Soc Am; 2011 Sep; 130(3):1488-502. PubMed ID: 21895089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.
    Bidelman GM; Krishnan A
    J Neurosci; 2009 Oct; 29(42):13165-71. PubMed ID: 19846704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase locked neural activity in the human brainstem predicts preference for musical consonance.
    Bones O; Hopkins K; Krishnan A; Plack CJ
    Neuropsychologia; 2014 May; 58(100):23-32. PubMed ID: 24690415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the auditory brainstem in processing musically relevant pitch.
    Bidelman GM
    Front Psychol; 2013; 4():264. PubMed ID: 23717294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans.
    Fishman YI; Volkov IO; Noh MD; Garell PC; Bakken H; Arezzo JC; Howard MA; Steinschneider M
    J Neurophysiol; 2001 Dec; 86(6):2761-88. PubMed ID: 11731536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.
    Bidelman GM; Grall J
    Neuroimage; 2014 Nov; 101():204-14. PubMed ID: 25019679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The basis of musical consonance as revealed by congenital amusia.
    Cousineau M; McDermott JH; Peretz I
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19858-63. PubMed ID: 23150582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.
    Cousineau M; Bidelman GM; Peretz I; Lehmann A
    PLoS One; 2015; 10(12):e0145439. PubMed ID: 26720000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cochlear implant user with exceptional musical hearing ability.
    Maarefvand M; Marozeau J; Blamey PJ
    Int J Audiol; 2013 Jun; 52(6):424-32. PubMed ID: 23509878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired Perception of Sensory Consonance and Dissonance in Cochlear Implant Users.
    Caldwell MT; Jiradejvong P; Limb CJ
    Otol Neurotol; 2016 Mar; 37(3):229-34. PubMed ID: 26825669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Losing the music: aging affects the perception and subcortical neural representation of musical harmony.
    Bones O; Plack CJ
    J Neurosci; 2015 Mar; 35(9):4071-80. PubMed ID: 25740534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem correlates of behavioral and compositional preferences of musical harmony.
    Bidelman GM; Krishnan A
    Neuroreport; 2011 Mar; 22(5):212-6. PubMed ID: 21358554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality.
    Andermann M; Patterson RD; Rupp A
    J Neurophysiol; 2020 Apr; 123(4):1320-1331. PubMed ID: 32073930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musical pitch and lexical tone perception with cochlear implants.
    Wang W; Zhou N; Xu L
    Int J Audiol; 2011 Apr; 50(4):270-8. PubMed ID: 21190394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcortical representation of musical dyads: individual differences and neural generators.
    Bones O; Plack CJ
    Hear Res; 2015 May; 323():9-21. PubMed ID: 25636498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affective evaluation of simultaneous tone combinations in congenital amusia.
    Marin MM; Thompson WF; Gingras B; Stewart L
    Neuropsychologia; 2015 Nov; 78():207-20. PubMed ID: 26455803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.
    Santarelli R; del Castillo I; Cama E; Scimemi P; Starr A
    Hear Res; 2015 Dec; 330(Pt B):200-12. PubMed ID: 26188103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurobiological foundations for the theory of harmony in western tonal music.
    Tramo MJ; Cariani PA; Delgutte B; Braida LD
    Ann N Y Acad Sci; 2001 Jun; 930():92-116. PubMed ID: 11458869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear implant users move in time to the beat of drum music.
    Phillips-Silver J; Toiviainen P; Gosselin N; Turgeon C; Lepore F; Peretz I
    Hear Res; 2015 Mar; 321():25-34. PubMed ID: 25575604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early neural responses underlie advantages for consonance over dissonance.
    Crespo-Bojorque P; Monte-OrdoƱo J; Toro JM
    Neuropsychologia; 2018 Aug; 117():188-198. PubMed ID: 29885961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.