BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21895280)

  • 1. Note: Direct force and ionic-current measurements on DNA in a nanocapillary.
    Otto O; Steinbock LJ; Wong DW; Gornall JL; Keyser UF
    Rev Sci Instrum; 2011 Aug; 82(8):086102. PubMed ID: 21895280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing DNA with micro- and nanocapillaries and optical tweezers.
    Steinbock LJ; Otto O; Skarstam DR; Jahn S; Chimerel C; Gornall JL; Keyser UF
    J Phys Condens Matter; 2010 Nov; 22(45):454113. PubMed ID: 21339600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the position-dependent electrophoretic force on DNA in a glass nanocapillary.
    Bulushev RD; Steinbock LJ; Khlybov S; Steinbock JF; Keyser UF; Radenovic A
    Nano Lett; 2014 Nov; 14(11):6606-13. PubMed ID: 25343616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers.
    Sischka A; Spiering A; Khaksar M; Laxa M; König J; Dietz KJ; Anselmetti D
    J Phys Condens Matter; 2010 Nov; 22(45):454121. PubMed ID: 21339608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inserting and manipulating DNA in a nanopore with optical tweezers.
    Keyser UF; van der Does J; Dekker C; Dekker NH
    Methods Mol Biol; 2009; 544():95-112. PubMed ID: 19488696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical tweezers for mechanical control over DNA in a nanopore.
    Keyser UF
    Methods Mol Biol; 2012; 870():115-34. PubMed ID: 22528261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of the Drag Force during Controlled Translocation of a DNA-Protein Complex through a Glass Nanocapillary.
    Bulushev RD; Marion S; Radenovic A
    Nano Lett; 2015 Oct; 15(10):7118-25. PubMed ID: 26393370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores.
    Sischka A; Kleimann C; Hachmann W; Schäfer MM; Seuffert I; Tönsing K; Anselmetti D
    Rev Sci Instrum; 2008 Jun; 79(6):063702. PubMed ID: 18601408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
    Huisstede JH; Subramaniam V; Bennink ML
    Microsc Res Tech; 2007 Jan; 70(1):26-33. PubMed ID: 17080431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis.
    Otto O; Gutsche C; Kremer F; Keyser UF
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023710. PubMed ID: 18315308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA translocation through low-noise glass nanopores.
    Steinbock LJ; Bulushev RD; Krishnan S; Raillon C; Radenovic A
    ACS Nano; 2013 Dec; 7(12):11255-62. PubMed ID: 24274458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-rheology on (polymer-grafted) colloids using optical tweezers.
    Gutsche C; Elmahdy MM; Kegler K; Semenov I; Stangner T; Otto O; Ueberschär O; Keyser UF; Krueger M; Rauscher M; Weeber R; Harting J; Kim YW; Lobaskin V; Netz RR; Kremer F
    J Phys Condens Matter; 2011 May; 23(18):184114. PubMed ID: 21508470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying DNA translocation in nanocapillaries using single molecule fluorescence.
    Thacker VV; Ghosal S; Hernández-Ainsa S; Bell NA; Keyser UF
    Appl Phys Lett; 2012 Nov; 101(22):223704. PubMed ID: 23284180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction to optical tweezers: background, system designs, and commercial solutions.
    van Mameren J; Wuite GJ; Heller I
    Methods Mol Biol; 2011; 783():1-20. PubMed ID: 21909880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superresolution imaging in optical tweezers using high-speed cameras.
    Staforelli JP; Vera E; Brito JM; Solano P; Torres S; Saavedra C
    Opt Express; 2010 Feb; 18(4):3322-31. PubMed ID: 20389339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting DNA folding with nanocapillaries.
    Steinbock LJ; Otto O; Chimerel C; Gornall J; Keyser UF
    Nano Lett; 2010 Jul; 10(7):2493-7. PubMed ID: 20515038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed ionic current sensing with glass nanopores.
    Bell NA; Thacker VV; Hernández-Ainsa S; Fuentes-Perez ME; Moreno-Herrero F; Liedl T; Keyser UF
    Lab Chip; 2013 May; 13(10):1859-62. PubMed ID: 23563625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-coated nanocapillaries for DNA sensing.
    Hernández-Ainsa S; Muus C; Bell NA; Steinbock LJ; Thacker VV; Keyser UF
    Analyst; 2013 Jan; 138(1):104-6. PubMed ID: 23148206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA origami nanopores for controlling DNA translocation.
    Hernández-Ainsa S; Bell NA; Thacker VV; Göpfrich K; Misiunas K; Fuentes-Perez ME; Moreno-Herrero F; Keyser UF
    ACS Nano; 2013 Jul; 7(7):6024-30. PubMed ID: 23734828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.