These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21895288)

  • 1. Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique.
    Qiu L; Zheng XH; Zhu J; Tang DW
    Rev Sci Instrum; 2011 Aug; 82(8):086110. PubMed ID: 21895288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The freestanding sensor-based 3ω technique for measuring thermal conductivity of solids: principle and examination.
    Qiu L; Tang DW; Zheng XH; Su GP
    Rev Sci Instrum; 2011 Apr; 82(4):045106. PubMed ID: 21529038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freestanding Flexible Sensor Based on 3
    Qiu L; Ma Y; Ouyang Y; Feng Y; Zhang X
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber.
    Schiffres SN; Malen JA
    Rev Sci Instrum; 2011 Jun; 82(6):064903. PubMed ID: 21721720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of thermal effusivity of a fine wire and contact resistance of a junction using a T type probe.
    Wang J; Gu M; Zhang X; Wu G
    Rev Sci Instrum; 2009 Jul; 80(7):076107. PubMed ID: 19655992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formalism of thermal waves applied to the characterization of materials thermal effusivity.
    Chauchois A; Antczak E; Defer D; Carpentier O
    Rev Sci Instrum; 2011 Jul; 82(7):074902. PubMed ID: 21806216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerosol jet printed 3 omega sensors for thermal conductivity measurement.
    Kempf N; Zhang Y
    Rev Sci Instrum; 2021 Oct; 92(10):105008. PubMed ID: 34717438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal effusivity measurements for liquids: a self-consistent photoacoustic methodology.
    Balderas-López JA
    Rev Sci Instrum; 2007 Jun; 78(6):064901. PubMed ID: 17614629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High accuracy, self-calibrating photopyroelectric device for the absolute determination of thermal conductivity and thermal effusivity of liquids.
    Menon PC; Rajesh RN; Glorieux C
    Rev Sci Instrum; 2009 May; 80(5):054904. PubMed ID: 19485527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature thermal conductivity of platinum microwire by 3ω method.
    Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B
    Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electropyroelectric technique: A methodology free of fitting procedures for thermal effusivity determination in liquids.
    Ivanov R; Marin E; Villa J; Gonzalez E; Rodríguez CI; Olvera JE
    Rev Sci Instrum; 2015 Jun; 86(6):064902. PubMed ID: 26133860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues.
    Lubner SD; Choi J; Wehmeyer G; Waag B; Mishra V; Natesan H; Bischof JC; Dames C
    Rev Sci Instrum; 2015 Jan; 86(1):014905. PubMed ID: 25638111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscale, bendable thermoreflectance sensor for local measurements of the thermal effusivity of biological fluids and tissues.
    Xie X; Diao Z; Cahill DG
    Rev Sci Instrum; 2020 Apr; 91(4):044903. PubMed ID: 32357710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photopyroelectric Investigation of Thermal Effusivity of Binary Liquid Mixtures by FPPE-TWRC Method.
    Pop MN; Dadarlat D; Streza M; Tosa V
    Acta Chim Slov; 2011 Sep; 58(3):549-54. PubMed ID: 24062115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Device for characterization of thermal effusivity of liquids using photothermal beam deflection.
    Sandoval-Romero GE; García-Valenzuela A; Sánchez-Pérez C; Hernández-Cordero J; Muratikov KL
    Rev Sci Instrum; 2007 Oct; 78(10):104901. PubMed ID: 17979448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3omega method to measure thermal properties of electrically conducting small-volume liquid.
    Choi SR; Kim J; Kim D
    Rev Sci Instrum; 2007 Aug; 78(8):084902. PubMed ID: 17764347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: Photopyroelectric measurement of thermal effusivity of transparent liquids by a method free of fitting procedures.
    Ivanov R; Marín E; Villa J; Aguilar CH; Pacheco AD; Garrido SH
    Rev Sci Instrum; 2016 Feb; 87(2):026105. PubMed ID: 26931904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids.
    Tada Y; Harada M; Tanigaki M; Eguchi W
    Rev Sci Instrum; 1978 Sep; 49(9):1305. PubMed ID: 18699307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An infrared transient method for determining the thermal inertia, conductivity, and diffusivity of solids.
    Schultz AW
    Appl Opt; 1968 Sep; 7(9):1845-51. PubMed ID: 20068890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.