BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21895330)

  • 1. Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies.
    Gharekhan AH; Arora S; Oza AN; Sureshkumar MB; Pradhan A; Panigrahi PK
    J Biomed Opt; 2011 Aug; 16(8):087003. PubMed ID: 21895330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues.
    Gupta S; Nair MS; Pradhan A; Biswal NC; Agarwal N; Agarwal A; Panigrahi PK
    J Biomed Opt; 2005; 10(5):054012. PubMed ID: 16292972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence.
    Gharekhan AH; Arora S; Mayya KB; Panigrahi PK; Sureshkumar MB; Pradhan A
    J Biomed Opt; 2008; 13(5):054063. PubMed ID: 19021441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
    Breslin TM; Xu F; Palmer GM; Zhu C; Gilchrist KW; Ramanujam N
    Ann Surg Oncol; 2004 Jan; 11(1):65-70. PubMed ID: 14699036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic spectral features of the polarized fluorescence of human breast cancer in the wavelet domain.
    Gharekhan AH; Biswal NC; Gupta S; Panigrahi PK; Pradhan A
    Appl Spectrosc; 2012 Jul; 66(7):820-7. PubMed ID: 22710398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL
    J Biomed Opt; 2004; 9(5):940-50. PubMed ID: 15447015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods.
    Pu Y; Wang W; Yang Y; Alfano RR
    Appl Opt; 2013 Feb; 52(6):1293-301. PubMed ID: 23435002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of breast thermograms using Gabor wavelet anisotropy index.
    Suganthi SS; Ramakrishnan S
    J Med Syst; 2014 Sep; 38(9):101. PubMed ID: 25064085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMD-DWT based transform domain feature reduction approach for quantitative multi-class classification of breast lesions.
    Ara SR; Bashar SK; Alam F; Hasan MK
    Ultrasonics; 2017 Sep; 80():22-33. PubMed ID: 28499122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angle between 1 and 4 min gives the most significant difference in time-intensity curves between benign disease and breast cancer: analysis of dynamic magnetic resonance imaging in 103 patients with breast lesions.
    Hara M; Watanabe T; Okumura A; Kato K; Mohri N; Ishikawa M; Mizuno A; Takeyama H
    Clin Imaging; 2009; 33(5):335-42. PubMed ID: 19712811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N2 laser excited autofluorescence spectroscopy of formalin-fixed human breast tissue.
    Majumder SK; Ghosh N; Gupta PK
    J Photochem Photobiol B; 2005 Oct; 81(1):33-42. PubMed ID: 16107317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced autofluorescence spectroscopy: can it be of importance in detection of bladder lesions?
    Aboumarzouk O; Valentine R; Buist R; Ahmad S; Nabi G; Eljamel S; Moseley H; Kata SG
    Photodiagnosis Photodyn Ther; 2015 Mar; 12(1):76-83. PubMed ID: 25560417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI.
    Liu C; Liang C; Liu Z; Zhang S; Huang B
    Eur J Radiol; 2013 Dec; 82(12):e782-9. PubMed ID: 24034833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1233-42. PubMed ID: 14619993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammographic evidence of microenvironment changes in tumorous breasts.
    Marin Z; Batchelder KA; Toner BC; Guimond L; Gerasimova-Chechkina E; Harrow AR; Arneodo A; Khalil A
    Med Phys; 2017 Apr; 44(4):1324-1336. PubMed ID: 28112408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized diffuse reflectance measurements on cancerous and noncancerous tissues.
    Manhas S; Swami MK; Patel HS; Uppal A; Ghosh N; Gupta PK
    J Biophotonics; 2009 Oct; 2(10):581-7. PubMed ID: 19777473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet scattering transform and entropy features in fluorescence spectral signal analysis for cervical cancer diagnosis.
    Deo BS; Nayak S; Pal M; Panigrahi PK; Pradhan A
    Biomed Phys Eng Express; 2024 Apr; 10(4):. PubMed ID: 38636479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of Breast Lesions in Ultrasound Images through Multiresolution Analysis Using Undecimated Discrete Wavelet Transform.
    Prabusankarlal KM; Thirumoorthy P; Manavalan R
    Ultrason Imaging; 2016 Nov; 38(6):384-402. PubMed ID: 26586725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape symmetry analysis of breast tumors on ultrasound images.
    Yang W; Zhang S; Chen Y; Li W; Chen Y
    Comput Biol Med; 2009 Mar; 39(3):231-8. PubMed ID: 19178908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach to analyze the breast tissues in infrared images using nonlinear adaptive level sets and Riesz transform features.
    Prabha S; Suganthi SS; Sujatha CM
    Technol Health Care; 2015; 23(4):429-42. PubMed ID: 26409908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.