These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21895334)

  • 1. Efficient determination of the epidermal optical properties using a diffusion model-based approach: Monte Carlo studies.
    Tseng SH; Hou MF
    J Biomed Opt; 2011 Aug; 16(8):087007. PubMed ID: 21895334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of optical properties of superficial volumes of layered tissue phantoms.
    Tseng SH; Hayakawa CK; Spanier J; Durkin AJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):335-9. PubMed ID: 18232377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a diffusion-model-based approach for efficient quantification of superficial tissue properties.
    Tseng SH; Hou MF
    Opt Lett; 2010 Nov; 35(22):3739-41. PubMed ID: 21081981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations.
    Tseng SH; Hayakawa C; Spanier J; Durkin AJ
    J Biomed Opt; 2009; 14(5):054043. PubMed ID: 19895144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White Monte Carlo for time-resolved photon migration.
    Alerstam E; Andersson-Engels S; Svensson T
    J Biomed Opt; 2008; 13(4):041304. PubMed ID: 19021312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes.
    Lo JY; Yu B; Fu HL; Bender JE; Palmer GM; Kuech TF; Ramanujam N
    Opt Express; 2009 Feb; 17(3):1372-84. PubMed ID: 19188966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy.
    Hennessy R; Lim SL; Markey MK; Tunnell JW
    J Biomed Opt; 2013 Mar; 18(3):037003. PubMed ID: 23455965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media.
    Reif R; A'Amar O; Bigio IJ
    Appl Opt; 2007 Oct; 46(29):7317-28. PubMed ID: 17932546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties.
    Gomes AJ; Turzhitsky V; Ruderman S; Backman V
    Appl Opt; 2012 Jul; 51(20):4627-37. PubMed ID: 22781238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic method for determination of the absorption coefficient in brain tissue.
    Johansson JD
    J Biomed Opt; 2010; 15(5):057005. PubMed ID: 21054121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid method for fast Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with tumor-like heterogeneities.
    Zhu C; Liu Q
    J Biomed Opt; 2012 Jan; 17(1):010501. PubMed ID: 22352630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study.
    Zhu C; Liu Q
    Opt Express; 2011 Aug; 19(18):17799-812. PubMed ID: 21935148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative spectroscopy of superficial turbid media.
    Tseng SH; Hayakawa C; Tromberg BJ; Spanier J; Durkin AJ
    Opt Lett; 2005 Dec; 30(23):3165-7. PubMed ID: 16350274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the optical properties of anisotropic biological media using an isotropic diffusion model.
    Kienle A; Wetzel C; Bassi A; Comelli D; Taroni P; Pifferi A
    J Biomed Opt; 2007; 12(1):014026. PubMed ID: 17343501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.