These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21895336)

  • 1. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy.
    Dingari NC; Barman I; Kang JW; Kong CR; Dasari RR; Feld MS
    J Biomed Opt; 2011 Aug; 16(8):087009. PubMed ID: 21895336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose.
    Barman I; Kong CR; Dingari NC; Dasari RR; Feld MS
    Anal Chem; 2010 Dec; 82(23):9719-26. PubMed ID: 21050004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of noise-induced instabilities in quantitative biological spectroscopy and its implications for noninvasive glucose monitoring.
    Barman I; Dingari NC; Singh GP; Soares JS; Dasari RR; Smulko JM
    Anal Chem; 2012 Oct; 84(19):8149-56. PubMed ID: 22950485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.
    Pandey R; Paidi SK; Valdez TA; Zhang C; Spegazzini N; Dasari RR; Barman I
    Acc Chem Res; 2017 Feb; 50(2):264-272. PubMed ID: 28071894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive measurement of glucose in artificial plasma with near-infrared and Raman spectroscopy.
    Xue J; Chen H; Xiong D; Huang G; Ai H; Liang Y; Yan X; Gan Y; Chen C; Chao R; Ye L
    Appl Spectrosc; 2014; 68(4):428-33. PubMed ID: 24694699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reagentless blood analysis by near-infrared Raman spectroscopy.
    Koo TW; Berger AJ; Itzkan I; Horowitz G; Feld MS
    Diabetes Technol Ther; 1999; 1(2):153-7. PubMed ID: 11475287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of photobleaching on calibration model development in biological Raman spectroscopy.
    Barman I; Kong CR; Singh GP; Dasari RR
    J Biomed Opt; 2011; 16(1):011004. PubMed ID: 21280891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbidity-corrected Raman spectroscopy for blood analyte detection.
    Barman I; Singh GP; Dasari RR; Feld MS
    Anal Chem; 2009 Jun; 81(11):4233-40. PubMed ID: 19413337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements.
    Dingari NC; Barman I; Singh GP; Kang JW; Dasari RR; Feld MS
    Anal Bioanal Chem; 2011 Jul; 400(9):2871-80. PubMed ID: 21509482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy.
    Berger AJ; Itzkan I; Feld MS
    Spectrochim Acta A Mol Biomol Spectrosc; 1997 Feb; 53A(2):287-92. PubMed ID: 9097902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing.
    Singh SP; Mukherjee S; Galindo LH; So PTC; Dasari RR; Khan UZ; Kannan R; Upendran A; Kang JW
    Anal Bioanal Chem; 2018 Oct; 410(25):6469-6475. PubMed ID: 30046865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swept-source Raman spectroscopy of chemical and biological materials.
    Song J; So PTC; Yoo H; Kang JW
    J Biomed Opt; 2024 Jun; 29(Suppl 2):S22703. PubMed ID: 38584965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved CEEMDAN and PSO-SVR Modeling for Near-Infrared Noninvasive Glucose Detection.
    Li X; Li C
    Comput Math Methods Med; 2016; 2016():8301962. PubMed ID: 27635151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect on the partial least-squares prediction of yarn properties combining raman and infrared measurements and applying wavelength selection.
    de Groot PJ; Swierenga H; Postma GJ; Melssen WJ; Buydens LM
    Appl Spectrosc; 2003 Jun; 57(6):642-8. PubMed ID: 14658696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of aflatoxin B
    Deng J; Jiang H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121148. PubMed ID: 35306308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy for noninvasive glucose measurements.
    Enejder AM; Scecina TG; Oh J; Hunter M; Shih WC; Sasic S; Horowitz GL; Feld MS
    J Biomed Opt; 2005; 10(3):031114. PubMed ID: 16229639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive glucose sensing by transcutaneous Raman spectroscopy.
    Shih WC; Bechtel KL; Rebec MV
    J Biomed Opt; 2015 May; 20(5):051036. PubMed ID: 25688542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics.
    Barman I; Kong CR; Singh GP; Dasari RR; Feld MS
    Anal Chem; 2010 Jul; 82(14):6104-14. PubMed ID: 20575513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum.
    Rohleder D; Kocherscheidt G; Gerber K; Kiefer W; Köhler W; Möcks J; Petrich W
    J Biomed Opt; 2005; 10(3):031108. PubMed ID: 16229633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A shallow convolutional neural network with elastic nets for blood glucose quantitative analysis using Raman spectroscopy.
    Pian F; Wang Q; Wang M; Shan P; Li Z; Ma Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120229. PubMed ID: 34371316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.