BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21895486)

  • 1. Characterization of in vitro endothelial linings grown within microfluidic channels.
    Esch MB; Post DJ; Shuler ML; Stokol T
    Tissue Eng Part A; 2011 Dec; 17(23-24):2965-71. PubMed ID: 21895486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip.
    Li X; Mearns SM; Martins-Green M; Liu Y
    J Vis Exp; 2013 Oct; (80):e50771. PubMed ID: 24193102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.
    Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T
    J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.
    van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL
    Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel.
    Hwang SY; Kwon KW; Jang KJ; Park MC; Lee JS; Suh KY
    Anal Chem; 2010 Apr; 82(7):3016-22. PubMed ID: 20218573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
    Buchanan CF; Voigt EE; Szot CS; Freeman JW; Vlachos PP; Rylander MN
    Tissue Eng Part C Methods; 2014 Jan; 20(1):64-75. PubMed ID: 23730946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data.
    Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD
    Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions.
    Fede C; Fortunati I; Weber V; Rossetto N; Bertasi F; Petrelli L; Guidolin D; Signorini R; De Caro R; Albertin G; Ferrante C
    Microvasc Res; 2015 Jan; 97():147-55. PubMed ID: 25446009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A contact line pinning based microfluidic platform for modelling physiological flows.
    Tung CK; Krupa O; Apaydin E; Liou JJ; Diaz-Santana A; Kim BJ; Wu M
    Lab Chip; 2013 Oct; 13(19):3876-85. PubMed ID: 23917952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i.
    Li X; Xu S; He P; Liu Y
    PLoS One; 2015; 10(5):e0126797. PubMed ID: 25965067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
    Yang X; Forouzan O; Burns JM; Shevkoplyas SS
    Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels.
    Didar TF; Tabrizian M
    Lab Chip; 2012 Nov; 12(21):4363-71. PubMed ID: 22907392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.
    Raasch M; Rennert K; Jahn T; Peters S; Henkel T; Huber O; Schulz I; Becker H; Lorkowski S; Funke H; Mosig A
    Biofabrication; 2015 Mar; 7(1):015013. PubMed ID: 25727374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer.
    Choi JS; Piao Y; Seo TS
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1871-8. PubMed ID: 23670634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.