These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 21895486)
1. Characterization of in vitro endothelial linings grown within microfluidic channels. Esch MB; Post DJ; Shuler ML; Stokol T Tissue Eng Part A; 2011 Dec; 17(23-24):2965-71. PubMed ID: 21895486 [TBL] [Abstract][Full Text] [Related]
2. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip. Li X; Mearns SM; Martins-Green M; Liu Y J Vis Exp; 2013 Oct; (80):e50771. PubMed ID: 24193102 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711 [TBL] [Abstract][Full Text] [Related]
6. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141 [TBL] [Abstract][Full Text] [Related]
7. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel. Hwang SY; Kwon KW; Jang KJ; Park MC; Lee JS; Suh KY Anal Chem; 2010 Apr; 82(7):3016-22. PubMed ID: 20218573 [TBL] [Abstract][Full Text] [Related]
8. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014 [TBL] [Abstract][Full Text] [Related]
9. Microfabrication of cylindrical microfluidic channel networks for microvascular research. Huang Z; Li X; Martins-Green M; Liu Y Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Buchanan CF; Voigt EE; Szot CS; Freeman JW; Vlachos PP; Rylander MN Tissue Eng Part C Methods; 2014 Jan; 20(1):64-75. PubMed ID: 23730946 [TBL] [Abstract][Full Text] [Related]
11. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Fede C; Fortunati I; Weber V; Rossetto N; Bertasi F; Petrelli L; Guidolin D; Signorini R; De Caro R; Albertin G; Ferrante C Microvasc Res; 2015 Jan; 97():147-55. PubMed ID: 25446009 [TBL] [Abstract][Full Text] [Related]
13. A contact line pinning based microfluidic platform for modelling physiological flows. Tung CK; Krupa O; Apaydin E; Liou JJ; Diaz-Santana A; Kim BJ; Wu M Lab Chip; 2013 Oct; 13(19):3876-85. PubMed ID: 23917952 [TBL] [Abstract][Full Text] [Related]
14. In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i. Li X; Xu S; He P; Liu Y PLoS One; 2015; 10(5):e0126797. PubMed ID: 25965067 [TBL] [Abstract][Full Text] [Related]
15. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections. Yang X; Forouzan O; Burns JM; Shevkoplyas SS Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500 [TBL] [Abstract][Full Text] [Related]
16. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels. Didar TF; Tabrizian M Lab Chip; 2012 Nov; 12(21):4363-71. PubMed ID: 22907392 [TBL] [Abstract][Full Text] [Related]
17. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256 [TBL] [Abstract][Full Text] [Related]
18. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Raasch M; Rennert K; Jahn T; Peters S; Henkel T; Huber O; Schulz I; Becker H; Lorkowski S; Funke H; Mosig A Biofabrication; 2015 Mar; 7(1):015013. PubMed ID: 25727374 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer. Choi JS; Piao Y; Seo TS Bioprocess Biosyst Eng; 2013 Dec; 36(12):1871-8. PubMed ID: 23670634 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel. He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]